-
sin(A±B)=sinAcosB±cosAsinB.
-
cos(A±B)=cosAcosB∓sinAsinB.
-
tan(A±B)=1∓tanAtanBtanA±tanB.
-
sin(2A)=2sinAcosA.
-
cos(2A)=cos2A−sin2A=2cos2A−1=1−2sin2A.
-
tan(2A)=1−tan2A2tanA.
-
sinA+sinB=2sin2A+Bcos2A−B.
-
sinA−sinB=2cos2A+Bsin2A−B.
-
cosA+cosB=2cos2A+Bcos2A−B.
-
cosA−cosB=−2sin2A+Bsin2A−B.
-
sinAsinB=21[cos(A−B)−cos(A+B)].
-
cosAcosB=21[cos(A−B)+cos(A+B)].
-
sinAcosB=21[sin(A+B)+sin(A−B)].
-
For angles θ in the interval (0,2π): sinθ<θ<tanθ.
are all elementary functions (in their domains of definition).