跳到主要内容

Elementary Functions

Constant Functions

f(x)=c,cR.\begin{equation*} f(x) = c, \quad c \in \mathbb{R}. \end{equation*}
  • Domain: R\mathbb{R}.

  • Range: {c}\{c \}.

Identity Function

f(x)=x.\begin{equation*} f(x) = x. \end{equation*}
  • Domain: R\mathbb{R}.

  • Range: R\mathbb{R}.

Exponential Functions

f(x)=ax,a>0,  a1.\begin{equation*} f(x) = a^x, \quad a>0,\; a\neq1. \end{equation*}
  • Domain: R\mathbb{R}.
  • Range: (0,+)(0, +\infty).
  • Special case: f(x)=exf(x) = e^x is the natural exponential function.

Logarithmic Functions

f(x)=logax,a>0,  a1.\begin{equation*} f(x) = \log_a x, \quad a>0,\; a\neq1. \end{equation*}
  • Domain: (0,+)(0, +\infty).
  • Range: R\mathbb{R}.
  • Special case: f(x)=lnx=logexf(x) = \ln x = \log_e x.
  • Inverse: (logax)1=ax.(\log_a x)^{-1} = a^x.

Power Functions

f(x)=xa=ealnx,aR.\begin{equation*} f(x) = x^a = e ^ {a \ln x}, \quad a \in \mathbb{R}. \end{equation*}
  • Domain: (0,+)(0, +\infty).
  • Range: (0,+)(0, +\infty).
  • Typical examples: x2,  x3,  x,  1xx^2,\; x^3,\; \sqrt{x},\; \dfrac{1}{x}.

Trigonometric Functions

sinx,  cosx,  tanx=sinxcosx,  cotx=cosxsinx,  secx=1cosx,  cscx=1sinx.\begin{equation*} \sin x,\; \cos x,\; \tan x = \frac{\sin x}{\cos x},\; \cot x = \frac{\cos x}{\sin x},\; \sec x = \frac{1}{\cos x},\; \csc x = \frac{1}{\sin x}. \end{equation*}
  • Domain and Range:
FunctionDomainRange
sinx\sin xR\mathbb{R}[1,1][-1,1]
cosx\cos xR\mathbb{R}[1,1][-1,1]
tanx\tan xxπ/2+kπx\neq \pi/2 + k\piR\mathbb{R}

Theorems:

  1. sin(A±B)=sinAcosB±cosAsinB\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B\\.

  2. cos(A±B)=cosAcosBsinAsinB\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B\\.

  3. tan(A±B)=tanA±tanB1tanAtanB.\tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}.

  4. sin(2A)=2sinAcosA\sin(2A)=2\sin A\cos A.

  5. cos(2A)=cos2Asin2A=2cos2A1=12sin2A\cos(2A)=\cos^2A-\sin^2A=2\cos^2A-1=1-2\sin^2A.

  6. tan(2A)=2tanA1tan2A\tan(2A)=\frac{2\tan A}{1-\tan^2A}.

  7. sinA+sinB=2sinA+B2cosAB2\sin A+\sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}.

  8. sinAsinB=2cosA+B2sinAB2\sin A-\sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}.

  9. cosA+cosB=2cosA+B2cosAB2\cos A+\cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}.

  10. cosAcosB=2sinA+B2sinAB2\cos A-\cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}.

  11. sinAsinB=12[cos(AB)cos(A+B)]\sin A\sin B = \tfrac{1}{2}\big[\cos(A-B)-\cos(A+B)\big].

  12. cosAcosB=12[cos(AB)+cos(A+B)]\cos A\cos B = \tfrac{1}{2}\big[\cos(A-B)+\cos(A+B)\big].

  13. sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \tfrac{1}{2}\big[\sin(A+B)+\sin(A-B)\big].

  14. For angles θ\theta in the interval (0,π2):(0,\tfrac{\pi}{2}): sinθ<θ<tanθ\sin\theta < \theta < \tan\theta.

Inverse Trigonometric Functions

arcsinx,arccosx,arctanx.\begin{equation*} \arcsin x,\quad \arccos x,\quad \arctan x. \end{equation*}
  • Domains and ranges:
FunctionDomainRange
arcsinx\arcsin x[1,1][-1,1][π/2, π/2][-\pi/2,\ \pi/2]
arccosx\arccos x[1,1][-1,1][0, π][0,\ \pi]
arctanx\arctan xR\mathbb{R}(π/2, π/2)(-\pi/2,\ \pi/2)

Operations and Compositions

If f,gf,g are elementary functions, then

f+g,fg,fg,fg  (g0),fg\begin{equation*} f+g,\quad f-g,\quad f\cdot g,\quad \frac{f}{g}\;(g\neq0),\quad f\circ g \end{equation*}

are all elementary functions (in their domains of definition).

Example:

f(x)=sinx,g(x)=ex(fg)(x)=sin(ex)\begin{equation*} f(x)=\sin x,\quad g(x)=e^x \Rightarrow (f\circ g)(x)=\sin(e^x) \end{equation*}