跳到主要内容

Derivatives and Differentiation

Definition

A point x0x_0 is called an interior point of II, if there exists δ>0\delta > 0 such that

x, xx0<δxI.\begin{equation*} \forall x,\ |x - x_0| < \delta \Rightarrow x \in I. \end{equation*}

Let x0x_0 be an interior point of II. A function f:IRf: I \to \mathbb{R} is said to be differentiable at x0x_0 if there exists a linear function L:RRL: \mathbb{R} \to \mathbb{R} such that

f(x0+h)=f(x0)+L(h)+o(h),h0.\begin{equation*} f(x_0 + h) = f(x_0) + L(h) + o(h), \quad h \to 0. \end{equation*}

In this case, LL is called the differential of ff at x0x_0, denoted by df(x0)df(x_0).

For a one-variable function, the differential df(x0)df(x_0) is a linear function, that is, a proportional function whose proportionality constant is denoted by f(x0)f'(x_0). This f(x0)f'(x_0) is called the derivative of ff at x0x_0.

df(x0)(h)=f(x0)h.\begin{equation*} df(x_0)(h) = f'(x_0)h. \end{equation*} limh0f(x0+h)f(x0)f(x0)hh=limh0o(h)h=0.\begin{equation*} \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{h} = \lim_{h \to 0} \frac{o(h)}{h} = 0. \end{equation*}

The derivative is defined as:

f(x0)=limh0f(x0+h)f(x0)h.\begin{equation*} f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}. \end{equation*}

If this limit exists, we say that ff is differentiable at x0x_0.

Traditional notation:

Let Δx=h\Delta x = h, Δy=f(x0+Δx)f(x0)\Delta y = f(x_0 + \Delta x) - f(x_0), then

f(x0)=limh0ΔyΔx=dydxx0.\begin{equation*} f'(x_0) = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \left. \frac{dy}{dx} \right|_{x_0}. \end{equation*}
  • Lagrange notation: f(x0)f'(x_0)
  • Leibniz notation: dydx\displaystyle \frac{dy}{dx}

Chain Rule

Suppose ff is differentiable at x0x_0, and gg is differentiable at y0=f(x0)y_0 = f(x_0). Then the composite function gfg \circ f is differentiable at x0x_0, and

d(gf)(x0)=dg(y0)df(x0).\begin{equation*} \mathrm{d}(g \circ f)(x_0) = \mathrm{d}g(y_0) \circ \mathrm{d}f(x_0). \end{equation*}

Equivalently,

(gf)(x0)=g(y0)f(x0)=g(f(x0))f(x0).\begin{equation*} (g \circ f)'(x_0) = g'(y_0) \cdot f'(x_0) = g'(f(x_0)) f'(x_0). \end{equation*}

Differentiability of the Inverse Function

Suppose ff has a continuous inverse function. If ff is differentiable at x0x_0 and f(x0)0f'(x_0) \neq 0, then f1f^{-1} is differentiable at y0=f(x0)y_0 = f(x_0), and

d(f1)(y0)=(df(x0))1.\begin{equation*} \mathrm{d}(f^{-1})(y_0) = (\mathrm{d}f(x_0))^{-1}. \end{equation*}

Equivalently,

(f1)(y0)=1f(x0).\begin{equation*} (f^{-1})'(y_0) = \frac{1}{f'(x_0)}. \end{equation*}

Four Arithmetic Operations of Differentiation

Let f,gf, g be differentiable at x0x_0. Then f±gf \pm g and fgfg are differentiable at x0x_0, and

(f±g)(x0)=f(x0)±g(x0),\begin{equation*} (f \pm g)'(x_0) = f'(x_0) \pm g'(x_0), \end{equation*} (fg)(x0)=g(x0)f(x0)+f(x0)g(x0).\begin{equation*} (fg)'(x_0) = g(x_0) f'(x_0) + f(x_0) g'(x_0). \end{equation*}

If g(x0)0g(x_0) \neq 0, then

(fg)(x0)=f(x0)g(x0)f(x0)g(x0)[g(x0)]2.\begin{equation*} \left( \frac{f}{g} \right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{[g(x_0)]^2}. \end{equation*}

Examples:

  1. d(xn)=nxn1dx(nR)d(x^n)=n x^{n-1}dx\qquad(n\in\mathbb{R}).

  2. d(ex)=exdx,d(lnx)=1xdx (x>0)d(e^x)=e^x\,dx,\qquad d(\ln x)=\frac{1}{x}dx\ (x>0).

  3. d(ax)=axln(a)dx,d(logax)=1xlnadx (x>0)d(a^x)=a^x\ln(a)\,dx,\qquad d(\log_a x)=\frac{1}{x\ln a}dx\ (x>0).

  4. d(eu)=euudx,d(lnu)=uudxd(e^{u})=e^{u}u'dx,\qquad d(\ln u)=\frac{u'}{u}dx.

  5. d(sinx)=cosxdx,d(cosx)=sinxdx,d(tanx)=sec2xdxd(\sin x)=\cos x\,dx,\quad d(\cos x)=-\sin x\,dx,\quad d(\tan x)=\sec^2 x\,dx.

  6. d(cotx)=csc2xdx,d(secx)=secxtanxdx,d(cscx)=cscxcotxdxd(\cot x)=-\csc^2 x\,dx,\quad d(\sec x)=\sec x\tan x\,dx,\quad d(\csc x)=-\csc x\cot x\,dx.

  7. d(arcsinx)=11x2dx,d(arccosx)=11x2dxd(\arcsin x)=\frac{1}{\sqrt{1-x^2}}dx,\quad d(\arccos x)=-\frac{1}{\sqrt{1-x^2}}dx.

  8. d(arctanx)=11+x2dxd(\arctan x)=\frac{1}{1+x^2}dx.