Definition
If a function f f f is differentiable everywhere in an interval I I I , then the function
f ( 1 ) : = f ′ : I → R \begin{equation*}
f^{(1)} := f' : I \to \mathbb{R}
\end{equation*} f ( 1 ) := f ′ : I → R
is called the first derivative of f f f . We denote f ( 0 ) : = f f^{(0)} := f f ( 0 ) := f .
By induction, if the n n n -th derivative f ( n ) f^{(n)} f ( n ) of f f f exists, and f ( n ) f^{(n)} f ( n ) is differentiable at x 0 x_0 x 0 , then we define
f ( n + 1 ) ( x 0 ) = ( f ( n ) ) ′ ( x 0 ) . \begin{equation*}
f^{(n+1)}(x_0) = \big(f^{(n)}\big)'(x_0).
\end{equation*} f ( n + 1 ) ( x 0 ) = ( f ( n ) ) ′ ( x 0 ) .
We call f ( n + 1 ) ( x 0 ) f^{(n+1)}(x_0) f ( n + 1 ) ( x 0 ) the ( n + 1 ) (n+1) ( n + 1 ) -th derivative of f f f at x 0 x_0 x 0 . The second and third derivatives are denoted by f ′ ′ f'' f ′′ and f ′ ′ ′ f''' f ′′′ , respectively.
We also use the following notations:
f ∈ C n ( I ) means f ( n ) is continuous on I ; \begin{equation*}
f \in \mathcal{C}^n(I) \quad \text{means } f^{(n)} \text{ is continuous on } I;
\end{equation*} f ∈ C n ( I ) means f ( n ) is continuous on I ;
f ∈ C ∞ ( I ) means f has derivatives of all orders on I . \begin{equation*}
f \in \mathcal{C}^\infty(I) \quad \text{means } f \text{ has derivatives of all orders on } I.
\end{equation*} f ∈ C ∞ ( I ) means f has derivatives of all orders on I .
Four Basic Operations
Let f , g f, g f , g have n n n -th derivatives at x 0 x_0 x 0 . Then λ f + μ g \lambda f + \mu g λ f + μg and f g fg f g also have n n n -th derivatives at x 0 x_0 x 0 , and we have:
( λ f + μ g ) ( n ) ( x 0 ) = λ f ( n ) ( x 0 ) + μ g ( n ) ( x 0 ) \begin{equation*}
(\lambda f + \mu g)^{(n)}(x_0) = \lambda f^{(n)}(x_0) + \mu g^{(n)}(x_0)
\end{equation*} ( λ f + μg ) ( n ) ( x 0 ) = λ f ( n ) ( x 0 ) + μ g ( n ) ( x 0 )
( f g ) ( n ) ( x 0 ) = ∑ k = 0 n C n k f ( k ) ( x 0 ) g ( n − k ) ( x 0 ) \begin{equation*}
(fg)^{(n)}(x_0) = \sum_{k=0}^{n} C_n^k\, f^{(k)}(x_0)\, g^{(n-k)}(x_0)
\end{equation*} ( f g ) ( n ) ( x 0 ) = k = 0 ∑ n C n k f ( k ) ( x 0 ) g ( n − k ) ( x 0 )
If f f f is n n n -times differentiable at x 0 x_0 x 0 , and g g g is n n n -times differentiable at y 0 = f ( x 0 ) y_0 = f(x_0) y 0 = f ( x 0 ) , then the composite function g ∘ f g \circ f g ∘ f is n n n -times differentiable at x 0 x_0 x 0 .
Let f , g f, g f , g be n n n -times differentiable at x 0 x_0 x 0 , and suppose g ( x 0 ) ≠ 0 g(x_0) \neq 0 g ( x 0 ) = 0 . Then f g \dfrac{f}{g} g f is n n n -times differentiable at x 0 x_0 x 0 .
The functions arctan x \arctan x arctan x , arcsin x \arcsin x arcsin x , and arccos x \arccos x arccos x are all C ∞ \mathcal{C}^\infty C ∞ functions. Their derivatives are given by:
( arctan x ) ′ = 1 1 + x 2 , ( arcsin x ) ′ = 1 1 − x 2 , ( arccos x ) ′ = − 1 1 − x 2 . \begin{equation*}
(\arctan x)' = \frac{1}{1 + x^2}, \quad
(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}, \quad
(\arccos x)' = \frac{-1}{\sqrt{1 - x^2}}.
\end{equation*} ( arctan x ) ′ = 1 + x 2 1 , ( arcsin x ) ′ = 1 − x 2 1 , ( arccos x ) ′ = 1 − x 2 − 1 .
Suppose f f f is n n n -times differentiable on an interval I I I , and f ′ ( x ) ≠ 0 f'(x) \ne 0 f ′ ( x ) = 0 . (From continuity, f f f has a continuous inverse function on I I I .) Then f − 1 f^{-1} f − 1 is n n n -times differentiable on the interval f ( I ) f(I) f ( I ) .
If f ∈ C n ( I ) and f ′ ( x ) ≠ 0 , then f − 1 ∈ C n ( f ( I ) ) . \begin{equation*}
\text{If } f \in C^n(I) \text{ and } f'(x) \ne 0, \text{ then } f^{-1} \in C^n(f(I)).
\end{equation*} If f ∈ C n ( I ) and f ′ ( x ) = 0 , then f − 1 ∈ C n ( f ( I )) .
Corollay: All elementary functions are C ∞ C^{\infty} C ∞ functions.
Curvature Center, Radius, and Curvature of a Plane Curve
Solution. Let the curve be parameterized as x = x ( t ) , y = y ( t ) x = x(t), \, y = y(t) x = x ( t ) , y = y ( t ) .
The tangent line of the curve is
Y − y ( t ) = y ′ ( t ) x ′ ( t ) [ X − x ( t ) ] \begin{equation*}
Y - y(t) = \frac{y'(t)}{x'(t)} \,[X - x(t)]
\end{equation*} Y − y ( t ) = x ′ ( t ) y ′ ( t ) [ X − x ( t )]
The normal line is
y ′ ( t ) [ Y − y ( t ) ] = − x ′ ( t ) [ X − x ( t ) ] \begin{equation*}
y'(t) \,[Y - y(t)] = -x'(t) \,[X - x(t)]
\end{equation*} y ′ ( t ) [ Y − y ( t )] = − x ′ ( t ) [ X − x ( t )]
At a nearby point, the normal line is
y ′ ( t + h ) [ Y − y ( t + h ) ] = − x ′ ( t + h ) [ X − x ( t + h ) ] \begin{equation*}
y'(t+h) \,[Y - y(t+h)] = -x'(t+h) \,[X - x(t+h)]
\end{equation*} y ′ ( t + h ) [ Y − y ( t + h )] = − x ′ ( t + h ) [ X − x ( t + h )]
Expanding by Taylor’s theorem:
[ y ′ ( t ) + h y ′ ′ ( t ) + o ( h ) ] [ Y − y ( t ) − y ′ ( t ) h + o ( h ) ] = − [ x ′ ( t ) + x ′ ′ ( t ) h + o ( h ) ] [ X − x ( t ) − x ′ ( t ) h − o ( h ) ] \begin{equation*}
[y'(t) + h y''(t) + o(h)] \,[Y - y(t) - y'(t)h + o(h)]
= - [x'(t) + x''(t)h + o(h)] \,[X - x(t) - x'(t)h - o(h)]
\end{equation*} [ y ′ ( t ) + h y ′′ ( t ) + o ( h )] [ Y − y ( t ) − y ′ ( t ) h + o ( h )] = − [ x ′ ( t ) + x ′′ ( t ) h + o ( h )] [ X − x ( t ) − x ′ ( t ) h − o ( h )]
⇒ y ′ ( t ) [ Y − y ( t ) ] + x ′ ( t ) [ X − x ( t ) ] + h [ y ′ ′ ( t ) ( Y − y ( t ) ) + x ′ ′ ( t ) ( X − x ( t ) ) − ( y ′ ( t ) ) 2 − ( x ′ ( t ) ) 2 ] + o ( h ) = 0 \begin{equation*}
\Rightarrow \;
y'(t) \,[Y - y(t)] + x'(t) \,[X - x(t)]
+ h \,[\,y''(t)(Y - y(t)) + x''(t)(X - x(t)) - (y'(t))^2 - (x'(t))^2\,] + o(h) = 0
\end{equation*} ⇒ y ′ ( t ) [ Y − y ( t )] + x ′ ( t ) [ X − x ( t )] + h [ y ′′ ( t ) ( Y − y ( t )) + x ′′ ( t ) ( X − x ( t )) − ( y ′ ( t ) ) 2 − ( x ′ ( t ) ) 2 ] + o ( h ) = 0
When h → 0 h \to 0 h → 0 , the intersection of the two normals satisfies:
{ y ′ ( t ) [ Y − y ( t ) ] + x ′ ( t ) [ X − x ( t ) ] = 0 , y ′ ′ ( t ) [ Y − y ( t ) ] + x ′ ′ ( t ) [ X − x ( t ) ] = ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 . \begin{equation*}
\begin{cases}
y'(t) \,[Y - y(t)] + x'(t) \,[X - x(t)] = 0, \\
y''(t) \,[Y - y(t)] + x''(t) \,[X - x(t)] = (x'(t))^2 + (y'(t))^2.
\end{cases}
\end{equation*} { y ′ ( t ) [ Y − y ( t )] + x ′ ( t ) [ X − x ( t )] = 0 , y ′′ ( t ) [ Y − y ( t )] + x ′′ ( t ) [ X − x ( t )] = ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 .
Solving for the center of curvature ( X , Y ) (X, Y) ( X , Y ) :
{ X = x ( t ) − y ′ ( t ) [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ , Y = y ( t ) + x ′ ( t ) [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ . \begin{equation*}
\begin{cases}
X = x(t) - \dfrac{y'(t) \,\big[(x'(t))^2 + (y'(t))^2\big]}
{\begin{vmatrix}
x'(t) & x''(t) \\[4pt]
y'(t) & y''(t)
\end{vmatrix}}, \\[16pt]
Y = y(t) + \dfrac{x'(t) \,\big[(x'(t))^2 + (y'(t))^2\big]}
{\begin{vmatrix}
x'(t) & x''(t) \\[4pt]
y'(t) & y''(t)
\end{vmatrix}}.
\end{cases}
\end{equation*} ⎩ ⎨ ⎧ X = x ( t ) − x ′ ( t ) y ′ ( t ) x ′′ ( t ) y ′′ ( t ) y ′ ( t ) [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] , Y = y ( t ) + x ′ ( t ) y ′ ( t ) x ′′ ( t ) y ′′ ( t ) x ′ ( t ) [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] .
The radius of curvature is the distance from ( X , Y ) (X, Y) ( X , Y ) to ( x ( t ) , y ( t ) ) (x(t), y(t)) ( x ( t ) , y ( t )) :
R = [ X − x ( t ) ] 2 + [ Y − y ( t ) ] 2 = ( ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ) 3 ∣ det ( x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ) ∣ \begin{equation*}
R = \sqrt{[X - x(t)]^2 + [Y - y(t)]^2}
= \frac{\big(\sqrt{(x'(t))^2 + (y'(t))^2}\big)^3}
{\Big| \det
\begin{pmatrix}
x'(t) & x''(t) \\
y'(t) & y''(t)
\end{pmatrix} \Big|}
\end{equation*} R = [ X − x ( t ) ] 2 + [ Y − y ( t ) ] 2 = det ( x ′ ( t ) y ′ ( t ) x ′′ ( t ) y ′′ ( t ) ) ( ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ) 3
The curvature is the reciprocal of the radius of curvature:
κ = ∣ det ( x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ) ∣ [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] 3 / 2 \begin{equation*}
\kappa =
\frac{\Big| \det
\begin{pmatrix}
x'(t) & x''(t) \\
y'(t) & y''(t)
\end{pmatrix} \Big|}
{\big[(x'(t))^2 + (y'(t))^2\big]^{3/2}}
\end{equation*} κ = [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] 3/2 det ( x ′ ( t ) y ′ ( t ) x ′′ ( t ) y ′′ ( t ) )