跳到主要内容

Determinants

If

A=(abcd),\begin{equation*} A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \end{equation*}

is a 2×22 \times 2 matrix with entries from a field FF, then we define the determinant of AA, denoted det(A)\det(A) or A|A|, to be the scalar

adbc.\begin{equation*} ad - bc. \end{equation*}

The function det:M2×2(F)F\det : M_{2\times2}(F) \to F is a linear function of each row of a 2×22\times2 matrix when the other row is held fixed. That is, if u,v,u, v, and ww are in F2F^2 and kk is a scalar, then

det(u+kvw)=det(uw)+kdet(vw).\begin{equation*} \det \begin{pmatrix} u + kv \\ w \end{pmatrix} = \det \begin{pmatrix} u \\ w \end{pmatrix} + k \det \begin{pmatrix} v \\ w \end{pmatrix}. \end{equation*}

and

det(wu+kv)=det(wu)+kdet(wv).\begin{equation*} \det \begin{pmatrix} w \\ u + kv \end{pmatrix} = \det \begin{pmatrix} w \\ u \end{pmatrix} + k \det \begin{pmatrix} w \\ v \end{pmatrix}. \end{equation*}

For this definition, it is convenient to introduce the following notation: Given AMn×n(F)A \in M_{n\times n}(F), for n2n \ge 2, denote the (n1)×(n1)(n-1)\times(n-1) matrix obtained from AA by deleting row ii and column jj by A~ij\tilde{A}_{ij}.

Let AMn×n(F)A \in M_{n\times n}(F). If n=1n = 1, so that A=(A11)A = (A_{11}), we define

det(A)=A11.\begin{equation*} \det(A) = A_{11}. \end{equation*}

For n2n \ge 2, we define det(A)\det(A) recursively as

det(A)=j=1n(1)1+jA1jdet(A~1j).\begin{equation*} \det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \cdot \det(\tilde{A}_{1j}). \end{equation*}

The scalar det(A)\det(A) is called the determinant of AA and is also denoted by A|A|. The scalar

(1)i+jdet(A~ij)\begin{equation*} (-1)^{i+j} \det(\tilde{A}_{ij}) \end{equation*}

is called the cofactor of the entry of AA in row ii, column jj.

Letting

cij=(1)i+jdet(A~ij)\begin{equation*} c_{ij} = (-1)^{i+j} \det(\tilde{A}_{ij}) \end{equation*}

denote the cofactor of the row ii, column jj entry of AA, we can express the formula for the determinant of AA as

det(A)=A11c11+A12c12++A1nc1n.\begin{equation*} \det(A) = A_{11} c_{11} + A_{12} c_{12} + \cdots + A_{1n} c_{1n}. \end{equation*}

The determinant of an n×nn \times n matrix is a linear function of each row when the remaining rows are held fixed. That is, for 1rn1 \le r \le n, we have

det(a1ar1u+kvar+1an)=det(a1ar1uar+1an)+kdet(a1ar1var+1an).\begin{equation*} \det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u + kv \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} = \det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} + k \det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}. \end{equation*}

whenever kk is a scalar and uu, vv, and each aia_i are row vectors in FnF^n.

Theorems

  1. If AMn×n(F)A \in M_{n \times n}(F) has a row consisting entirely of zeros, then
det(A)=0.\begin{equation*} \det(A) = 0. \end{equation*}
  1. The determinant of a square matrix can be evaluated by cofactor expansion along any row. That is, if AMn×n(F)A \in M_{n \times n}(F), then for any integer ii (1in1 \le i \le n),
det(A)=j=1n(1)i+jAijdet(A~ij).\begin{equation*} \det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \cdot \det(\tilde{A}_{ij}). \end{equation*}
  1. If AMn×n(F)A \in M_{n \times n}(F) and BB is a matrix obtained from AA by interchanging any two rows of AA, then

    det(B)=det(A).\begin{equation*} \det(B) = -\det(A). \end{equation*}
  2. Let AMn×n(F)A \in M_{n \times n}(F), and let BB be a matrix obtained by adding a multiple of one row of AA to another row of AA. Then

    det(B)=det(A).\begin{equation*} \det(B) = \det(A). \end{equation*}
  3. If AMn×n(F)A \in M_{n \times n}(F) has rank less than nn, then

det(A)=0.\begin{equation*} \det(A) = 0. \end{equation*}
  1. For any A,BMn×n(F)A, B \in M_{n \times n}(F), we have

    det(AB)=det(A)det(B).\begin{equation*} \det(AB) = \det(A)\,\det(B). \end{equation*}
  2. For any AMn×n(F)A \in M_{n \times n}(F), we have

    det(At)=det(A).\begin{equation*} \det(A^{t}) = \det(A). \end{equation*}
  3. Let Ax=bAx = b be the matrix form of a system of nn linear equations in nn unknowns, where x=(x1,x2,,xn)t.x = (x_1, x_2, \ldots, x_n)^t. If det(A)0\det(A) \neq 0, then the system has a unique solution, and for each kk (k=1,2,,nk = 1,2,\ldots,n),

    xk=det(Mk)det(A),\begin{equation*} x_k = \frac{\det(M_k)}{\det(A)}, \end{equation*}

    where MkM_k is the n×nn \times n matrix obtained from AA by replacing column kk of AA with bb.