跳到主要内容

Exercises

  1. Consider a system of linear questions

    (a1+b)x1+a2x2+a3x3++anxn=0\begin{equation*} (a_1 + b)x_1 + a_2 x_2 + a_3 x_3 + \cdots + a_n x_n = 0 \end{equation*} a1x1+(a2+b)x2+a3x3++anxn=0\begin{equation*} a_1 x_1 + (a_2 + b)x_2 + a_3 x_3 + \cdots + a_n x_n = 0 \end{equation*} a1x1+a2x2+(a3+b)x3++anxn=0\begin{equation*} a_1 x_1 + a_2 x_2 + (a_3 + b)x_3 + \cdots + a_n x_n = 0 \end{equation*} \begin{equation*} \vdots \end{equation*} a1x1+a2x2+a3x3++(an+b)xn=0\begin{equation*} a_1 x_1 + a_2 x_2 + a_3 x_3 + \cdots + (a_n + b)x_n = 0 \end{equation*}

    where i=1nai0\sum_{i=1}^n a_i \ne 0. Determine the relationship between a1,a2,,ana_1, a_2, \cdots, a_n and bb such that

    a. This linear system has only a zero solution.

    b. This system has nonzero solutions. In this case, determine a solution set.

  2. Prove

    rank(LA)+rank(LB)n    rank(LAB)    min{rank(LA),rank(LB)},\begin{equation*} \operatorname{rank}(L_A) + \operatorname{rank}(L_B) - n \;\le\; \operatorname{rank}(L_{AB}) \;\le\; \min\{\operatorname{rank}(L_A), \operatorname{rank}(L_B)\}, \end{equation*}

    where AA and BB are n×nn \times n matrices.

  3. Prove

    rank(LA+B)    rank(LA)+rank(LB)\begin{equation*} \operatorname{rank}(L_{A+B}) \;\le\; \operatorname{rank}(L_A) + \operatorname{rank}(L_B) \end{equation*}

    where AA and BB are n×mn \times m matrices.

  4. Let A,BMn×n(R)A, B \in M_{n \times n}(\mathbb{R}). Suppose AB=BA=0AB = BA = 0 and rank(A2)=rank(A)\operatorname{rank}(A^2) = \operatorname{rank}(A). Prove that

    rank(A+B)=rank(A)+rank(B)\begin{equation*} \operatorname{rank}(A + B) = \operatorname{rank}(A) + \operatorname{rank}(B) \end{equation*}
  5. Let A,B,C,DA, B, C, D be n×nn \times n matrices such that they commute pairwise under matrix multiplication, and AC+BD=InAC + BD = I_n. Prove that:

    rank(AB)=rank(A)+rank(B)n.\begin{equation*} \operatorname{rank}(AB) = \operatorname{rank}(A) + \operatorname{rank}(B) - n. \end{equation*}
  6. AA is an n×nn \times n real matrix, AAt=k2InAA^t = k^2 I_n, kRk \in \mathbb{R}. Prove:

    rank(kInA)=rank((kInA)2).\begin{equation*} \operatorname{rank}(k I_n - A) = \operatorname{rank}\big((k I_n - A)^2\big). \end{equation*}
  7. Suppose AA is an n×nn \times n matrix with rank rr (1rn21 \le r \le \frac{n}{2}), and A2=0A^2 = 0. Prove that there exists an invertible matrix PP such that

    A=P(0Ir0000000)P1\begin{equation*} A = P \begin{pmatrix} 0 & I_r & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} \end{equation*}

    where IrI_r is the r×rr \times r identity matrix, and 00 are zero matrices.

  8. If A2=InA^2 = I_n, Prove AA is diagonalizable (here AA is a real square matrix).

  9. Let VV be a finite-dimensional real inner product space, and let UU and TT be self-adjoint linear operators on VV such that UT=TUUT = TU.

    Prove that there exists an orthonormal basis of VV consisting of vectors that are eigenvectors of both UU and TT.

  10. Let AA and BB be n×nn \times n complex matrices satisfying the condition AB=A+B.AB = A + B.

    Prove that AA and BB are simultaneously triangularizable (there exists a basis under which both AA and BB are upper triangular matrices).

  11. Let AA be an n×nn \times n matrix satisfying the polynomial equation i=0mbiAi=0\sum_{i=0}^{m} b_i A^i = 0, where the coefficients satisfy the condition bm>i=0m1bi.|b_m| > \sum_{i=0}^{m-1} |b_i|.

    Prove that the equation 2XXA2=AX2X - XA^2 = AX has only the trivial solution X=0X = 0.