跳到主要内容

7 Canonical Forms

7.1 The Jordan Canonical Form

From these subspaces, we select ordered bases whose union is an ordered basis β\beta for V\mathsf{V} such that

[T]β=(A1OOOA2OOOAk),\begin{equation*} [\mathsf{T}]_\beta = \begin{pmatrix} A_1 & O & \dots & O \\ O & A_2 & \dots & O \\ \vdots & \vdots & & \vdots \\ O & O & \dots & A_k \end{pmatrix}, \end{equation*}

where each OO is a zero matrix, and each AiA_i is a square matrix of the form (λ)(\lambda) or

(λ10000λ100000λ10000λ)\begin{equation*} \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix} \end{equation*}

for some eigenvalue λ\lambda of T\mathsf{T}. Such a matrix AiA_i is called a Jordan block corresponding to λ\lambda, and the matrix [T]β[\mathsf{T}]_\beta is called a Jordan canonical form of T\mathsf{T}. We also say that the ordered basis β\beta is a Jordan canonical basis for T\mathsf{T}. Observe that each Jordan block AiA_i is “almost” a diagonal matrix—in fact, [T]β[\mathsf{T}]_\beta is a diagonal matrix if and only if each AiA_i is of the form (λ)(\lambda).

Definition. Let T\mathsf{T} be a linear operator on a vector space V\mathsf{V}, and let λ\lambda be a scalar. A nonzero vector xx in V\mathsf{V} is called a generalized eigenvector of T\mathsf{T} corresponding to λ\lambda if

(TλI)p(x)=0\begin{equation*} (\mathsf{T} - \lambda\mathsf{I})^p(x) = 0 \end{equation*}

for some positive integer pp.

Notice that if xx is a generalized eigenvector of T\mathsf{T} corresponding to λ\lambda, and pp is the smallest positive integer for which (TλI)p(x)=0(\mathsf{T} - \lambda\mathsf{I})^p(x) = 0, then (TλI)p1(x)(\mathsf{T} - \lambda\mathsf{I})^{p-1}(x) is an eigenvector of T\mathsf{T} corresponding to λ\lambda. Therefore λ\lambda is an eigenvalue of T\mathsf{T}.

Definition. Let T\mathsf{T} be a linear operator on a vector space V\mathsf{V}, and let λ\lambda be an eigenvalue of T\mathsf{T}. The generalized eigenspace of T\mathsf{T} corresponding to λ\lambda, denoted Kλ\mathsf{K}_\lambda, is the subset of V\mathsf{V} defined by

Kλ={xV:(TλI)p(x)=0 for some positive integer p}.\begin{equation*} \mathsf{K}_\lambda = \{x \in \mathsf{V} : (\mathsf{T} - \lambda\mathsf{I})^p(x) = 0 \text{ for some positive integer } p\}. \end{equation*}

Note that Kλ\mathsf{K}_\lambda consists of the zero vector and all generalized eigenvectors corresponding to λ\lambda.

Theorems

  1. Let T\mathsf{T} be a linear operator on a vector space V\mathsf{V}, and let λ\lambda be an eigenvalue of T\mathsf{T}. Then:

    (a) Kλ\mathsf{K}_\lambda is a T\mathsf{T}-invariant subspace of V\mathsf{V} containing Eλ\mathsf{E}_\lambda.

    (b) For any scalar μλ\mu \neq \lambda, the restriction of TμI\mathsf{T} - \mu\mathsf{I} to Kλ\mathsf{K}_\lambda is one-to-one.

  2. Let T\mathsf{T} be a linear operator on a finite-dimensional vector space V\mathsf{V} such that the characteristic polynomial of T\mathsf{T} splits. Suppose that λ\lambda is an eigenvalue of T\mathsf{T} with multiplicity mm. Then:

    (a) dim(Kλ)m\dim(\mathsf{K}_\lambda) \le m.

    (b) Kλ=N((TλI)m)\mathsf{K}_\lambda = \mathsf{N}((\mathsf{T} - \lambda\mathsf{I})^m).

  3. Let T\mathsf{T} be a linear operator on a finite-dimensional vector space V\mathsf{V} such that the characteristic polynomial of T\mathsf{T} splits, and let λ1,λ2,,λk\lambda_1, \lambda_2, \dots, \lambda_k be the distinct eigenvalues of T\mathsf{T}. Then, for every xVx \in \mathsf{V}, there exist vectors viKλiv_i \in \mathsf{K}_{\lambda_i}, 1ik1 \le i \le k, such that

    x=v1+v2++vk.\begin{equation*} x = v_1 + v_2 + \dots + v_k. \end{equation*}
  4. Let T\mathsf{T} be a linear operator on a finite-dimensional vector space V\mathsf{V} such that the characteristic polynomial of T\mathsf{T} splits, and let λ1,λ2,,λk\lambda_1, \lambda_2, \dots, \lambda_k be the distinct eigenvalues of T\mathsf{T} with corresponding multiplicities m1,m2,,mkm_1, m_2, \dots, m_k. For 1ik1 \le i \le k, let βi\beta_i be an ordered basis for Kλi\mathsf{K}_{\lambda_i}. Then the following statements are true.

    (a) βiβj=\beta_i \cap \beta_j = \varnothing for iji \neq j.

    (b) β=β1β2βk\beta = \beta_1 \cup \beta_2 \cup \dots \cup \beta_k is an ordered basis for V\mathsf{V}.

    (c) dim(Kλi)=mi\dim(\mathsf{K}_{\lambda_i}) = m_i for all ii.

Definitions. Let T\mathsf{T} be a linear operator on a vector space V\mathsf{V}, and let xx be a generalized eigenvector of T\mathsf{T} corresponding to the eigenvalue λ\lambda. Suppose that pp is the smallest positive integer for which (TλI)p(x)=0(\mathsf{T} - \lambda\mathsf{I})^p(x) = 0. Then the ordered set

{(TλI)p1(x),(TλI)p2(x),,(TλI)(x),x}\begin{equation*} \{(\mathsf{T} - \lambda\mathsf{I})^{p-1}(x), (\mathsf{T} - \lambda\mathsf{I})^{p-2}(x), \dots, (\mathsf{T} - \lambda\mathsf{I})(x), x\} \end{equation*}

is called a cycle of generalized eigenvectors of T\mathsf{T} corresponding to λ\lambda. The vectors (TλI)p1(x)(\mathsf{T} - \lambda\mathsf{I})^{p-1}(x) and xx are called the initial vector and the end vector of the cycle, respectively. We say that the length of the cycle is pp.

Theorem Let T\mathsf{T} be a linear operator on a finite-dimensional vector space V\mathsf{V} whose characteristic polynomial splits, and suppose that β\beta is a basis for V\mathsf{V} such that β\beta is a disjoint union of cycles of generalized eigenvectors of T\mathsf{T}. Then the following statements are true. (a) For each cycle γ\gamma of generalized eigenvectors contained in β\beta, W=span(γ)\mathsf{W} = \operatorname{span}(\gamma) is T\mathsf{T}-invariant, and [TW]γ[\mathsf{T}_{\mathsf{W}}]_\gamma is a Jordan block. (b) β\beta is a Jordan canonical basis for V\mathsf{V}.

Theorem. Let T\mathsf{T} be a linear operator on a vector space V\mathsf{V}, and let λ\lambda be an eigenvalue of T\mathsf{T}. Suppose that γ1,γ2,,γq\gamma_1, \gamma_2, \dots, \gamma_q are cycles of generalized eigenvectors of T\mathsf{T} corresponding to λ\lambda such that the initial vectors of the γi\gamma_i's are distinct and form a linearly independent set. Then the γi\gamma_i's are disjoint, and their union γ=i=1qγi\gamma = \bigcup_{i=1}^q \gamma_i is linearly independent.