跳到主要内容

3 Derivatives and Differentials of Functions

3.1 Definition and Calculation of Derivatives

Differential

A point x0x_0 is called an interior point of II, if there exists δ>0\delta > 0 such that

x, xx0<δxI.\begin{equation*} \forall x,\ |x - x_0| < \delta \Rightarrow x \in I. \end{equation*}

Let x0x_0 be an interior point of II. A function f:IRf: I \to \mathbb{R} is said to be differentiable at x0x_0 if there exists a linear function L:RRL: \mathbb{R} \to \mathbb{R} such that

f(x0+h)=f(x0)+L(h)+o(h),h0.\begin{equation*} f(x_0 + h) = f(x_0) + L(h) + o(h), \quad h \to 0. \end{equation*}

In this case, LL is called the differential of ff at x0x_0, denoted by df(x0)df(x_0).

Derivative

For a one-variable function, the differential df(x0)df(x_0) is a linear function, that is, a proportional function whose proportionality constant is denoted by f(x0)f'(x_0). This f(x0)f'(x_0) is called the derivative of ff at x0x_0.

df(x0)(h)=f(x0)h.\begin{equation*} df(x_0)(h) = f'(x_0)h. \end{equation*} limh0f(x0+h)f(x0)f(x0)hh=limh0o(h)h=0.\begin{equation*} \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{h} = \lim_{h \to 0} \frac{o(h)}{h} = 0. \end{equation*}

The derivative is defined as:

f(x0)=limh0f(x0+h)f(x0)h.\begin{equation*} f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}. \end{equation*}

If this limit exists, we say that ff is differentiable at x0x_0.

  • Traditional notation: Let Δx=h\Delta x = h, Δy=f(x0+Δx)f(x0)\Delta y = f(x_0 + \Delta x) - f(x_0), then
f(x0)=limh0ΔyΔx=dydxx0.\begin{equation*} f'(x_0) = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \left. \frac{dy}{dx} \right|_{x_0}. \end{equation*}
  • Lagrange notation: f(x0).f'(x_0).

  • Leibniz notation: dydx.\displaystyle \frac{dy}{dx}.

Theorem 3.1. Let f,gf, g be differentiable at x0x_0. Then f±gf \pm g and fgfg are differentiable at x0x_0, and

(f±g)(x0)=f(x0)±g(x0),\begin{equation*} (f \pm g)'(x_0) = f'(x_0) \pm g'(x_0), \end{equation*} (fg)(x0)=g(x0)f(x0)+f(x0)g(x0).\begin{equation*} (fg)'(x_0) = g(x_0) f'(x_0) + f(x_0) g'(x_0). \end{equation*}

If g(x0)0g(x_0) \neq 0, then

(fg)(x0)=f(x0)g(x0)f(x0)g(x0)[g(x0)]2.\begin{equation*} \left( \frac{f}{g} \right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{[g(x_0)]^2}. \end{equation*}

Theorem 3.2. Suppose ff is differentiable at x0x_0, and gg is differentiable at y0=f(x0)y_0 = f(x_0). Then the composite function gfg \circ f is differentiable at x0x_0, and

d(gf)(x0)=dg(y0)df(x0).\begin{equation*} \mathrm{d}(g \circ f)(x_0) = \mathrm{d}g(y_0) \circ \mathrm{d}f(x_0). \end{equation*}

Equivalently,

(gf)(x0)=g(y0)f(x0)=g(f(x0))f(x0).\begin{equation*} (g \circ f)'(x_0) = g'(y_0) \cdot f'(x_0) = g'(f(x_0)) f'(x_0). \end{equation*}

Theorem 3.3. Suppose ff has a continuous inverse function. If ff is differentiable at x0x_0 and f(x0)0f'(x_0) \neq 0, then f1f^{-1} is differentiable at y0=f(x0)y_0 = f(x_0), and

d(f1)(y0)=(df(x0))1.\begin{equation*} \mathrm{d}(f^{-1})(y_0) = (\mathrm{d}f(x_0))^{-1}. \end{equation*}

Equivalently,

(f1)(y0)=1f(x0).\begin{equation*} (f^{-1})'(y_0) = \frac{1}{f'(x_0)}. \end{equation*}

Examples

  1. d(xn)=nxn1dx(nR)d(x^n)=n x^{n-1}dx\qquad(n\in\mathbb{R}).

  2. d(ex)=exdx,d(lnx)=1xdx (x>0)d(e^x)=e^x\,dx,\qquad d(\ln x)=\frac{1}{x}dx\ (x>0).

  3. d(ax)=axlnadx,d(logax)=1xlnadx (x>0)d(a^x)=a^x\ln a\,dx,\qquad d(\log_a x)=\frac{1}{x\ln a}dx\ (x>0).

  4. d(eu)=euudx,d(lnu)=uudxd(e^{u})=e^{u}u'dx,\qquad d(\ln u)=\frac{u'}{u}dx.

  5. d(sinx)=cosxdx,d(cosx)=sinxdx,d(tanx)=sec2xdxd(\sin x)=\cos x\,dx,\quad d(\cos x)=-\sin x\,dx,\quad d(\tan x)=\sec^2 x\,dx.

  6. d(cotx)=csc2xdx,d(secx)=secxtanxdx,d(cscx)=cscxcotxdxd(\cot x)=-\csc^2 x\,dx,\quad d(\sec x)=\sec x\tan x\,dx,\quad d(\csc x)=-\csc x\cot x\,dx.

  7. d(arcsinx)=11x2dx,d(arccosx)=11x2dxd(\arcsin x)=\frac{1}{\sqrt{1-x^2}}dx,\quad d(\arccos x)=-\frac{1}{\sqrt{1-x^2}}dx.

  8. d(arctanx)=11+x2dxd(\arctan x)=\frac{1}{1+x^2}dx.

3.2 Higher-Order Derivatives

Higher-Order Derivative

If a function ff is differentiable everywhere in an interval II, then the function

f(1):=f:IR\begin{equation*} f^{(1)} := f' : I \to \mathbb{R} \end{equation*}

is called the first derivative of ff. We denote f(0):=ff^{(0)} := f.

By induction, if the nn-th derivative f(n)f^{(n)} of ff exists, and f(n)f^{(n)} is differentiable at x0x_0, then we define

f(n+1)(x0)=(f(n))(x0).\begin{equation*} f^{(n+1)}(x_0) = \big(f^{(n)}\big)'(x_0). \end{equation*}

We call f(n+1)(x0)f^{(n+1)}(x_0) the (n+1)(n+1)-th derivative of ff at x0x_0. The second and third derivatives are denoted by ff'' and ff''', respectively.

  • We also use the following notations:
fCn(I)means f(n) is continuous on I;\begin{equation*} f \in \mathcal{C}^n(I) \quad \text{means } f^{(n)} \text{ is continuous on } I; \end{equation*} fC(I)means f has derivatives of all orders on I.\begin{equation*} f \in \mathcal{C}^\infty(I) \quad \text{means } f \text{ has derivatives of all orders on } I. \end{equation*}

Theorem 3.4. Let f,gf, g have nn-th derivatives at x0x_0. Then λf+μg\lambda f + \mu g and fgfg also have nn-th derivatives at x0x_0, and we have:

(λf+μg)(n)(x0)=λf(n)(x0)+μg(n)(x0)\begin{equation*} (\lambda f + \mu g)^{(n)}(x_0) = \lambda f^{(n)}(x_0) + \mu g^{(n)}(x_0) \end{equation*} (fg)(n)(x0)=k=0nCnkf(k)(x0)g(nk)(x0)\begin{equation*} (fg)^{(n)}(x_0) = \sum_{k=0}^{n} C_n^k\, f^{(k)}(x_0)\, g^{(n-k)}(x_0) \end{equation*}

Theorem 3.5. If ff is nn-times differentiable at x0x_0, and gg is nn-times differentiable at y0=f(x0)y_0 = f(x_0), then the composite function gfg \circ f is nn-times differentiable at x0x_0.

Theorem 3.6. Let f,gf, g be nn-times differentiable at x0x_0, and suppose g(x0)0g(x_0) \neq 0. Then fg\dfrac{f}{g} is nn-times differentiable at x0x_0.

Theorem 3.7. The curvature is the reciprocal of the radius of curvature:

κ=det(x(t)x(t)y(t)y(t))[(x(t))2+(y(t))2]3/2\begin{equation*} \kappa = \frac{\Big| \det \begin{pmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{pmatrix} \Big|} {\big[(x'(t))^2 + (y'(t))^2\big]^{3/2}} \end{equation*}

3.3 Differential Mean Value Theorems

Local Extremum

A point x0Ix_0 \in I is called a local maximum of ff if there exists a neighborhood VV of x0x_0 such that

xVI,f(x)f(x0).\begin{equation*} \forall x \in V \cap I,\quad f(x) \le f(x_0). \end{equation*}

The definition of a local minimum is similar.

Critical Point

A point x0x_0 is called a critical point of ff if

f(x0)=0.\begin{equation*} f'(x_0) = 0. \end{equation*}

Theorem 3.8. If ff is differentiable at a local extremum x0x_0, then x0x_0 is a critical point of ff.

Theorem 3.9 (Rolle's Theorem). Suppose ff is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and f(a)=f(b)f(a) = f(b). Then there exists some ξ(a,b)\xi \in (a,b) such that

f(ξ)=0.\begin{equation*} f'(\xi) = 0. \end{equation*}

Corollary 1. Suppose ff is differentiable on the open interval (a,b)(a,b), and

limxa+f(x)=limxbf(x)=AR{±}.\begin{equation*} \lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = A \in \mathbb{R} \cup \{\pm\infty\}. \end{equation*}

Then there exists some ξ(a,b)\xi \in (a,b) such that

f(ξ)=0.\begin{equation*} f'(\xi) = 0. \end{equation*}

Theorem 3.10 (Cauchy's Mean Value Theorem). Let t1<t2+-\infty \le t_1 < t_2 \le +\infty, and let α,β,A,BR\alpha, \beta, A, B \in \mathbb{R}. Suppose x(t)x(t) and y(t)y(t) are differentiable on the open interval (t1,t2)(t_1, t_2), and

limtt1+x(t)=x1,limtt2x(t)=x2,limtt1+y(t)=y1,limtt2y(t)=y2.\begin{equation*} \lim_{t \to t_1^+} x(t) = x_1,\quad \lim_{t \to t_2^-} x(t) = x_2,\quad \lim_{t \to t_1^+} y(t) = y_1,\quad \lim_{t \to t_2^-} y(t) = y_2. \end{equation*}

Then there exists some ξ(t1,t2)\xi \in (t_1, t_2) such that

x(ξ)(y2y1)=y(ξ)(x2x1).\begin{equation*} x'(\xi)(y_2 - y_1) = y'(\xi)(x_2 - x_1). \end{equation*}

Theorem 3.11 (Lagrange's Mean Value Theorem). Suppose ff is continuous on the closed interval [a,b][a,b] and differentiable on the open interval (a,b)(a,b). Then there exists some ξ(a,b)\xi \in (a,b) such that

f(ξ)=f(b)f(a)ba.\begin{equation*} f'(\xi) = \frac{f(b) - f(a)}{b - a}. \end{equation*}

Theorem 3.12 (Darboux's Theorem). Suppose ff is differentiable on an interval II. Then f(I)f'(I) is an interval. In particular, if x1,x2Ix_1, x_2 \in I satisfy

f(x1)<0<f(x2),\begin{equation*} f'(x_1) < 0 < f'(x_2), \end{equation*}

then there exists some ξ\xi between x1x_1 and x2x_2 such that

f(ξ)=0.\begin{equation*} f'(\xi) = 0. \end{equation*}

Corollary 1. If ff is differentiable on an interval II, and

f(x)0(xI),\begin{equation*} f'(x) \ne 0 \quad (\forall x \in I), \end{equation*}

then ff is strictly monotonic on II.

3.4 Using Derivatives to Analyze Functions

Monotonicity of Function

Theorem 3.13. Suppose ff is continuous on an interval II and differentiable in the interior of II. Then:

xI,f(x)0  (resp. f(x)0)\begin{equation*} \forall x \in I,\quad f'(x) \ge 0\ \ (\text{resp. } f'(x) \le 0) \end{equation*}

​ iff ff is non-decreasing (resp. non-increasing) on II.

xI,f(x)=0\begin{equation*} \forall x \in I,\quad f'(x) = 0 \end{equation*}

​ iff ff is constant on II.

xI,f(x)>0  (resp. f(x)<0)\begin{equation*} \forall x \in I,\quad f'(x) > 0\ \ (\text{resp. } f'(x) < 0) \end{equation*}

​ implies that ff is strictly increasing (resp. strictly decreasing) on II.

Strict Local Extremum

Theorem 3.14. Assume ff is differentiable at x0x_0 and

f(x0)=0.\begin{equation*} f'(x_0) = 0. \end{equation*}
  • If f(x0)>0f''(x_0) > 0, then x0x_0 is a strict local minimum of ff.
  • If f(x0)<0f''(x_0) < 0, then x0x_0 is a strict local maximum of ff.

Theorem 3.15. Assume ff is 2n2n-times differentiable at x0x_0, where nn is a positive integer, and

f(x0)==f(2n1)(x0)=0.\begin{equation*} f'(x_0) = \cdots = f^{(2n-1)}(x_0) = 0. \end{equation*}
  • If f(2n)(x0)>0f^{(2n)}(x_0) > 0, then x0x_0 is a strict local minimum of ff.
  • If f(2n)(x0)<0f^{(2n)}(x_0) < 0, then x0x_0 is a strict local maximum of ff.

Theorem 3.16. Assume ff is (2n+1)(2n+1)-times differentiable at x0x_0, where nn is a positive integer, and

f(x0)==f(2n)(x0)=0.\begin{equation*} f'(x_0) = \cdots = f^{(2n)}(x_0) = 0. \end{equation*}
  • If f(2n+1)(x0)>0f^{(2n+1)}(x_0) > 0, then ff is strictly increasing in a neighborhood of x0x_0.
  • If f(2n+1)(x0)<0f^{(2n+1)}(x_0) < 0, then ff is strictly decreasing in a neighborhood of x0x_0.

3.5 Convexity of Functions

Convex Function

A function ff is called convex on an interval II if for all x1,x2Ix_1, x_2 \in I and all tt with 0<t<10 < t < 1, we have

f((1t)x1+tx2)(1t)f(x1)+tf(x2).\begin{equation*} f((1-t)x_1 + t x_2) \le (1-t) f(x_1) + t f(x_2). \end{equation*}

If equality occurs only when x1=x2x_1 = x_2, then ff is called strictly convex.

Theorem 3.17. Let ff be a convex function on the interval II. Then for any x1,x2,,xnIx_1, x_2, \cdots, x_n \in I, and λ1,λ2,,λn>0\lambda_1, \lambda_2, \cdots, \lambda_n > 0, with λ1+λ2++λn=1\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1, we have

f(i=1nλixi)i=1nλif(xi).\begin{equation*} f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i). \end{equation*}

If ff is a strictly convex function on II, then when x1,x2,,xnx_1, x_2, \cdots, x_n are not all equal, we have

f(i=1nλixi)<i=1nλif(xi).\begin{equation*} f\left(\sum_{i=1}^{n} \lambda_i x_i\right) < \sum_{i=1}^{n} \lambda_i f(x_i). \end{equation*}

Theorem 3.18. The function ff is a convex function on the interval II if and only if for any (x1,x2)I(x_1, x_2) \subset I and any x(x1,x2)x \in (x_1, x_2), we have

f(x)f(x1)xx1f(x2)f(x1)x2x1f(x2)f(x)x2x.\begin{equation*} \frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}. \end{equation*}

Corollary 1. Let f:IRf: I \to \mathbb{R} be a convex function. If x0x_0 is an interior point of II (i.e., x0int(I)x_0 \in \text{int}(I)), then ff is continuous at x0x_0.

Corollary 2. Let ff be convex on an open interval (a,b)(a, b). For every x(a,b)x \in (a, b), both the left-hand derivative f(x)f'_-(x) and the right-hand derivative f+(x)f'_+(x) exist and are finite.

Theorem 3.19. Let ff be continuous on [a,b][a, b] and differentiable on (a,b)(a, b), then a necessary and sufficient condition for ff to be a convex function (strictly convex function) on [a,b][a, b] is that ff' is increasing (strictly increasing) on (a,b)(a, b).

3.6 L'Hospital's Rule

Theorem 3.20 (00\frac{0}{0} Form). Let f,gf, g be differentiable on the interval (a,b)(a,b). Assume that

f(x)=o(1),g(x)=o(1),xa,g(x)0.\begin{equation*} f(x) = o(1),\quad g(x)=o(1),\quad x\to a,\quad g'(x)\ne 0. \end{equation*}

If

limxaf(x)g(x)=AR{±},\begin{equation*} \lim_{x\to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}\cup\{\pm\infty\}, \end{equation*}

then

limxaf(x)g(x)=A.\begin{equation*} \lim_{x\to a} \frac{f(x)}{g(x)} = A. \end{equation*}

Theorem 3.21 (\frac{\infty}{\infty} Form). Assume that g(x)g(x)\to\infty as xax\to a, and g(x)0g'(x)\neq 0. If

limxaf(x)g(x)=AR{±},\begin{equation*} \lim_{x\to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}\cup\{\pm\infty\}, \end{equation*}

then

limxaf(x)g(x)=A.\begin{equation*} \lim_{x\to a} \frac{f(x)}{g(x)} = A. \end{equation*}

Confirm that g(x)0g'(x)\neq 0 on a neighborhood of the point

3.7 The Taylor Formula and Its Analytical Applications

Definition of the nn-th Order Taylor Polynomial

Assume that ff has nn derivatives at x0x_0. The nn-th order Taylor polynomial of ff at x0x_0 is defined by

Tf,x0,n(h)=f(x0)+f(x0)h+f(x0)2h2++f(n)(x0)n!hn.\begin{equation*} T_{f,x_0,n}(h) = f(x_0) + f'(x_0) h + \frac{f''(x_0)}{2} h^2 + \cdots + \frac{f^{(n)}(x_0)}{n!} h^n . \end{equation*}

We call Tf,x0,n(h)T_{f,x_0,n}(h) the nn-th order Taylor polynomial of ff at x0x_0.

Taylor’s Theorem with Peano Remainder

If ff has nn derivatives at x0x_0, then a polynomial

Pn(h)=a0+a1h++anhn\begin{equation*} P_n(h)=a_0+a_1 h+\cdots+a_n h^n \end{equation*}

satisfies

f(x0+h)=Pn(h)+o(hn),h0,\begin{equation*} f(x_0+h)=P_n(h)+o(h^n),\qquad h\to 0, \end{equation*}

if and only if Pn(h)P_n(h) is the nn-th order Taylor polynomial of ff at x0x_0.

Taylor's Theorem with Lagrange Remainder

Assume that ff is continuous on an interval II and (n+1)(n+1) times differentiable on the interior of II. For any interior point x0Ix_0\in I and any xIx\in I, there exists a point ξ\xi strictly between xx and x0x_0 such that

f(x)=Tf,x0,n(xx0)+f(n+1)(ξ)(n+1)!(xx0)n+1.\begin{equation*} f(x) = T_{f,x_0,n}(x - x_0) + \frac{f^{(n+1)}(\xi)}{(n+1)!}\,(x-x_0)^{\,n+1}. \end{equation*}

Examples

ex=1+x+x22++xnn!+o(xn),x0.\begin{equation*} e^{x} = 1 + x + \frac{x^{2}}{2} + \cdots + \frac{x^{n}}{n!} + o(x^{n}),\qquad x\to 0. \end{equation*}
  1. sinx=xx33!++(1)nx2n+1(2n+1)!+o(x2n+2),x0, \begin{equation*} \sin x = x - \frac{x^{3}}{3!} + \cdots + (-1)^{n}\frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}),\qquad x\to 0, \end{equation*}
  2. cosx=1x22!++(1)nx2n(2n)!+o(x2n+1),x0, \begin{equation*} \cos x = 1 - \frac{x^{2}}{2!} + \cdots + (-1)^{n}\frac{x^{2n}}{(2n)!} + o(x^{2n+1}),\qquad x\to 0, \end{equation*}
  3. ln(1+x)=xx22++(1)n1xnn+o(xn),x0. \begin{equation*} \ln(1+x) = x- \frac{x^{2}}{2} + \cdots + (-1)^{n-1}\frac{x^{n}}{n} + o(x^{n}),\qquad x\to 0. \end{equation*}
  4. (1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+o(xn),x0. \begin{equation*} (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n}),\qquad x\to 0. \end{equation*}
  5. arctanx=xx33++(1)nx2n+12n+1+o(x2n+2),x0, \begin{equation*} \arctan x = x - \frac{x^{3}}{3} + \cdots + (-1)^{n}\frac{x^{2n+1}}{2n+1} + o(x^{2n + 2}),\qquad x\to 0, \end{equation*}