跳到主要内容

4 Indefinite Integrals

4.1 The Concept of Indefinite Integrals

A function FF is called an antiderivative of a function ff on an interval IRI \subset \mathbb{R} if

F(x)=f(x),xI.\begin{equation*} F'(x) = f(x), \qquad \forall x \in I. \end{equation*}

The indefinite integral of ff on IRI \subset \mathbb{R} is the family of all antiderivatives of ff on II, and is denoted by

f(x)dx.\begin{equation*} \int f(x)\, dx. \end{equation*}

Let IRI \subset \mathbb{R} be an interval. If F1F_1 and F2F_2 are two antiderivatives of ff on II, then the difference F1(x)F2(x)F_1(x) - F_2(x) is a constant. Consequently,

f(x)dx=F(x)+C,\begin{equation*} \int f(x)\, dx = F(x) + C, \end{equation*}

where FF is any antiderivative of ff on II, and CC is an arbitrary constant.

Examples

  1. exdx=ex+C. \begin{equation*} \int e^{x}\, dx = e^{x} + C. \end{equation*}
  2. sinxdx=cosx+C, \begin{equation*} \int \sin x\, dx = -\cos x + C, \end{equation*}
cosxdx=sinx+C.\begin{equation*} \int \cos x\, dx = \sin x + C. \end{equation*}
sinhxdx=coshx+C,\begin{equation*} \int \sinh x\, dx = \cosh x + C, \end{equation*} coshxdx=sinhx+C.\begin{equation*} \int \cosh x\, dx = \sinh x + C. \end{equation*}

Where

sinhx=exex2,coshx=ex+ex2.\begin{equation*} \sinh x = \frac{e^{x} - e^{-x}}{2},\qquad \cosh x = \frac{e^{x} + e^{-x}}{2}. \end{equation*}
  1. For α1\alpha \ne -1,

    xαdx=xα+1α+1+C.\begin{equation*} \int x^{\alpha}\, dx = \frac{x^{\alpha+1}}{\alpha+1} + C. \end{equation*}
  2. 1xdx=lnx+C. \begin{equation*} \int \frac{1}{x}\, dx = \ln|x| + C. \end{equation*}
  3. 11+x2dx=arctanx+C. \begin{equation*} \int \frac{1}{1+x^{2}}\, dx = \arctan x + C. \end{equation*}

4.2 The Computation of Indefinite Integrals

Theorem 4.1. If FF and GG are antiderivatives of ff and gg on an interval II, then λF+μG\lambda F + \mu G is an antiderivative of λf+μg\lambda f + \mu g on II. Consequently,

(λf(x)+μg(x))dx=λf(x)dx+μg(x)dx.\begin{equation*} \int \bigl(\lambda f(x) + \mu g(x)\bigr)\, dx = \lambda \int f(x)\, dx + \mu \int g(x)\, dx. \end{equation*}

Theorem 4.2. If FF and GG are antiderivatives of ff and gg, respectively, then

f(G(x))g(x)dx=F(G(x))+C.\begin{equation*} \int f(G(x))\, g(x)\, dx = F(G(x)) + C. \end{equation*}

Theorem 4.3. If FF and GG are antiderivatives of ff and gg on an interval II, then

F(x)g(x)dx=F(x)G(x)G(x)f(x)dx.\begin{equation*} \int F(x)\, g(x)\, dx = F(x) G(x) - \int G(x)\, f(x)\, dx. \end{equation*}

Examples

  1. Compute

    x1+x2dx.\begin{equation*} \int \frac{x}{1+x^{2}}\, dx. \end{equation*}

    Let

    y=1+x2,dy=2xdx.\begin{equation*} y = 1 + x^{2}, \qquad dy = 2x\, dx. \end{equation*}

    Then

    x1+x2dx=1211+x2d(1+x2)=121ydy.\begin{equation*} \int \frac{x}{1+x^{2}}\, dx = \frac{1}{2} \int \frac{1}{1+x^{2}}\, d(1+x^{2}) = \frac{1}{2} \int \frac{1}{y}\, dy. \end{equation*}

    Thus

    121ydy=12lny+C=12ln(1+x2)+C.\begin{equation*} \frac{1}{2}\int \frac{1}{y}\, dy = \frac{1}{2}\ln|y| + C = \frac{1}{2}\ln(1+x^{2}) + C. \end{equation*}
  2. Compute

1cos2mxdx.\begin{equation*} \int \frac{1}{\cos^{2m} x}\, dx. \end{equation*}

Let

t=tanx,dt=sec2xdx=1cos2xdx.\begin{equation*} t = \tan x, \qquad dt = \sec^{2}x\, dx = \frac{1}{\cos^{2}x}\, dx. \end{equation*}

Then

1cos2mxdx=1cos2m2xd(tanx)=(1+t2)m1dt.\begin{equation*} \int \frac{1}{\cos^{2m} x}\, dx = \int \frac{1}{\cos^{2m-2} x}\, d(\tan x) = \int (1+t^{2})^{\,m-1}\, dt. \end{equation*}

Thus the integral can be reduced to a polynomial-type integral in tt:

1cos2mxdx=(1+t2)m1dt,t=tanx.\begin{equation*} \int \frac{1}{\cos^{2m} x}\, dx = \int (1+t^{2})^{\,m-1}\, dt, \qquad t=\tan x. \end{equation*}
  1. Compute
f(cos2x)dx.\begin{equation*} \int f(\cos^{2} x)\, dx. \end{equation*}

We first rewrite the integrand:

f(cos2x)dx=f(cos2x)cos2xcos2xdx.\begin{equation*} \int f(\cos^{2} x)\, dx = \int \frac{f(\cos^{2} x)\,\cos^{2}x}{\cos^{2}x}\, dx. \end{equation*}

Let

t=tanx,dt=1cos2xdx,cos2x=11+t2.\begin{equation*} t = \tan x, \qquad dt = \frac{1}{\cos^{2}x}\, dx, \qquad \cos^{2}x = \frac{1}{1+t^{2}}. \end{equation*}

Then

f(cos2x)dx=11+t2f ⁣(11+t2)dt.\begin{equation*} \int f(\cos^{2} x)\, dx = \int \frac{1}{1+t^{2}}\, f\!\left(\frac{1}{1+t^{2}}\right)\, dt. \end{equation*}

Thus the integral of f(cos2x)f(\cos^{2}x) is transformed into an integral in tt:

f(cos2x)dx=11+t2f ⁣(11+t2)dt,t=tanx.\begin{equation*} \int f(\cos^{2} x)\, dx = \int \frac{1}{1+t^{2}}\, f\!\left(\frac{1}{1+t^{2}}\right)\, dt, \qquad t=\tan x. \end{equation*}
  1. Compute

    1x2+a2dx\begin{equation*} \int \frac{1}{\sqrt{x^{2}+a^{2}}}\, dx \end{equation*}

    Let

    θ=arctan ⁣(xa)\begin{equation*} \theta = \arctan\!\left(\frac{x}{a}\right) \end{equation*}

    Then

    1x2+a2dx=1a2tan2θ+a2d(atanθ)\begin{equation*} \int \frac{1}{\sqrt{x^{2}+a^{2}}}\, dx = \int \frac{1}{\sqrt{a^{2}\tan^{2}\theta + a^{2}}}\, d(a\tan\theta) \end{equation*}

    Since

    a2tan2θ+a2=a1+tan2θ=acosθ,\begin{equation*} \sqrt{a^{2}\tan^{2}\theta + a^{2}} = a\sqrt{1+\tan^{2}\theta} = \frac{a}{\cos\theta}, \end{equation*}

    we have

    1x2+a2dx=1cosθdθ\begin{equation*} \int \frac{1}{\sqrt{x^{2}+a^{2}}}\, dx = \int \frac{1}{\cos\theta}\, d\theta \end{equation*}

    Let

    t=sinθ,dt=cosθdθ.\begin{equation*} t = \sin\theta, \qquad dt = \cos\theta\, d\theta . \end{equation*}

    Then

    1cosθdθ=12(11t+11+t)dt=12ln1+t1t+C\begin{equation*} \int \frac{1}{\cos\theta}\, d\theta = \frac{1}{2}\int \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = \frac{1}{2}\ln\frac{1+t}{1-t} + C \end{equation*}

    Thus

    12ln1+sinθ1sinθ+C\begin{equation*} \frac{1}{2}\ln\frac{1+\sin\theta}{1-\sin\theta} + C \end{equation*}

    Since

    sinθ=xa2+x2,\begin{equation*} \sin\theta = \frac{x}{\sqrt{a^{2}+x^{2}}}, \end{equation*}

    we get

    12ln(1+xa2+x21xa2+x2)=ln(x+a2+x2)+C1.\begin{equation*} \frac{1}{2}\ln \left( \frac{1+\frac{x}{\sqrt{a^{2}+x^{2}}}} {1-\frac{x}{\sqrt{a^{2}+x^{2}}}} \right) = \ln\left(x+\sqrt{a^{2}+x^{2}}\right) + C_1. \end{equation*}

    Therefore

    1x2+a2dx=ln(x+a2+x2)+C.\begin{equation*} \int \frac{1}{\sqrt{x^{2}+a^{2}}}\, dx = \ln\left(x+\sqrt{a^{2}+x^{2}}\right) + C . \end{equation*}
  2. Let

    In=exsinnxdx.\begin{equation*} I_n = \int e^{x}\sin^{n}x\, dx . \end{equation*}

    Then

    In=exsinnxdx=sinnxd(ex)=exsinnxexd(sinnx).\begin{equation*} I_n = \int e^{x}\sin^{n}x\, dx = \int \sin^{n}x\, d(e^{x}) = e^{x}\sin^{n}x - \int e^{x} d(\sin^{n}x). \end{equation*}

    Compute the differential:

    d(sinnx)=nsinn1xcosxdx.\begin{equation*} d(\sin^{n}x) = n\sin^{\,n-1}x \cos x\, dx. \end{equation*}

    Hence

    In=exsinnxnsinn1xcosxexdx.\begin{equation*} I_n = e^{x}\sin^{n}x - n\int \sin^{\,n-1}x \cos x\, e^{x}\, dx. \end{equation*}

    Rewrite the integral:

    In=exsinnxnexsinn1xcosx+nexd(sinn1xcosx).\begin{equation*} I_n = e^{x}\sin^{n}x - n e^{x}\sin^{\,n-1}x\cos x + n\int e^{x} d(\sin^{\,n-1}x\cos x). \end{equation*}

    Thus

    In=ex(sinnxnsinn1xcosx)+n(n1)(In2In)nIn.\begin{equation*} I_n = e^{x}\bigl(\sin^{n}x - n\sin^{\,n-1}x\cos x\bigr) + n(n-1)(I_{n-2} - I_n) - n I_n . \end{equation*}

    Solve for (I_n):

    In=exsinn1x(sinxncosx)+n(n1)In2n2+1.\begin{equation*} I_n = \frac{ e^{x}\sin^{\,n-1}x\bigl(\sin x - n\cos x\bigr) + n(n-1)I_{n-2} }{n^{2}+1}. \end{equation*}

    Special case:

    I1=ex(sinxcosx)2.\begin{equation*} I_1 = \frac{e^{x}(\sin x - \cos x)}{2}. \end{equation*}
  3. A rational function is a quotient of two polynomials:

    R(x)=P(x)Q(x),P,QR[x],Q(x)0.\begin{equation*} R(x)=\frac{P(x)}{Q(x)}, \qquad P, Q \in \mathbb{R}[x], \quad Q(x)\neq 0. \end{equation*}

    To integrate R(x)R(x), follow these steps.

Polynomial Long Division

​ If

degPdegQ,\begin{equation*} \deg P \ge \deg Q, \end{equation*}

​ divide PP by QQ:

P(x)Q(x)=S(x)+A(x)Q(x),degA<degQ.\begin{equation*} \frac{P(x)}{Q(x)} = S(x) + \frac{A(x)}{Q(x)}, \qquad \deg A < \deg Q. \end{equation*}

​ Thus,

R(x)dx=S(x)dx+A(x)Q(x)dx.\begin{equation*} \int R(x)\,dx = \int S(x)\,dx + \int \frac{A(x)}{Q(x)}\, dx. \end{equation*}

Factor the Denominator

​ Factor Q(x)Q(x) into irreducible real factors:

Q(x)=(xai)ki(x2+bjx+cj)mj,\begin{equation*} Q(x)= \prod (x-a_i)^{k_i} \prod (x^2 + b_j x + c_j)^{m_j}, \end{equation*}

​ where each quadratic satisfies

bj24cj<0.\begin{equation*} b_j^2 - 4c_j < 0. \end{equation*}

Partial Fraction Decomposition

A1xa+A2(xa)2++Ak(xa)k\begin{equation*} \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \cdots + \frac{A_k}{(x-a)^k} \end{equation*} A1x+B1x2+bx+c+A2x+B2(x2+bx+c)2++Amx+Bm(x2+bx+c)m.\begin{equation*} \frac{A_1x+B_1}{x^2+bx+c} + \frac{A_2x+B_2}{(x^2+bx+c)^2} + \cdots + \frac{A_mx+B_m}{(x^2+bx+c)^m}. \end{equation*}

Integrate Each Term

1xadx=lnxa+C.\begin{equation*} \int \frac{1}{x-a}\, dx = \ln |x-a| + C. \end{equation*} 1(xa)kdx=(xa)k+1k1+C(k2).\begin{equation*} \int \frac{1}{(x-a)^k}\, dx = \frac{-(x-a)^{-k+1}}{k-1} + C \qquad (k\ge 2). \end{equation*} x2+bx+c=(x+b2)2+d,d=cb24.\begin{equation*} x^2+bx+c = \left(x+\frac{b}{2}\right)^2 + d, \quad d = c-\frac{b^2}{4}. \end{equation*} 1(x+b2)2+ddx=1darctan ⁣(x+b2d)+C.\begin{equation*} \int \frac{1}{(x+\frac{b}{2})^2+d}\, dx = \frac{1}{\sqrt{d}} \arctan\!\left(\frac{x+\frac{b}{2}}{\sqrt{d}}\right) + C. \end{equation*} x+b2(x+b2)2+ddx=12ln((x+b2)2+d)+C.\begin{equation*} \int \frac{x+\frac{b}{2}}{(x+\frac{b}{2})^2+d}\, dx = \frac{1}{2}\ln\left((x+\frac{b}{2})^2+d\right) + C. \end{equation*}

  1. In=1(1+x2)ndx(n2). \begin{equation*} I_n = \int \frac{1}{(1+x^2)^n}\,dx \qquad (n\ge 2). \end{equation*}

    Write

    In=1(1+x2)ndx=(1+x2)x2(1+x2)ndx=In1x2(1+x2)ndx.\begin{equation*} I_n = \int \frac{1}{(1+x^2)^n}\,dx = \int \frac{(1+x^2)-x^2}{(1+x^2)^n}\,dx = I_{n - 1} - \int \frac{x^2}{(1+x^2)^n}\,dx. \end{equation*} x2(1+x2)ndx=12x(1+x2)nd(1+x2)=12(1n)xd((1+x2)1n)=12(1n)(x(1+x2)n11(1+x2)n1dx).\begin{equation*} \begin{aligned} &\int \frac{x^2}{(1+x^2)^n}\,dx = \frac{1}{2}\int \frac{x}{(1+x^2)^{n}} \,d(1 + x^2) = \frac{1}{2 (1 - n)}\int x \,d\left((1 + x^2) ^ {1 - n}\right) \\ &= \frac{1}{2 (1 - n)} \left( \frac{x}{(1+x^2)^{n-1}} - \int \frac{1}{(1 + x^2)^{n - 1}} \, dx\right). \end{aligned} \end{equation*}

    Therefore

    In=(112(n1))In1+12(n1)x(1+x2)n1.\begin{equation*} I_n = \left(1 - \frac{1}{2(n-1)}\right) I_{n-1} + \frac{1}{2(n-1)}\frac{x}{(1+x^2)^{n-1}}. \end{equation*}

    Thus the reduction formula is

    In=x2(n1)(1+x2)n1+2n32(n1)In1,n2.\begin{equation*} I_n = \frac{x}{2(n-1)(1+x^2)^{n-1}} + \frac{2n-3}{2(n-1)}\, I_{n-1}, \qquad n\ge 2. \end{equation*}

    Together with

    I1=dx1+x2=arctanx+C,\begin{equation*} I_1 = \int \frac{dx}{1+x^2} = \arctan x + C, \end{equation*}
  2. R(cosθ,sinθ)dθ=R ⁣(1t21+t2,  2t1+t2)21+t2dt. \begin{equation*} \int R(\cos\theta,\sin\theta)\, d\theta = \int R\!\left( \frac{1 - t^{2}}{1 + t^{2}},\; \frac{2t}{1 + t^{2}} \right) \frac{2}{1+t^{2}}\, dt. \end{equation*}
R(x,x21)dx=R ⁣(1+t21t2,  2t1t2)d ⁣(1+t21t2).\begin{equation*} \int R(x,\sqrt{x^{2}-1})\, dx = \int R\!\left( \frac{1+t^{2}}{1-t^{2}},\; \frac{2t}{\,1-t^{2}\,} \right) \, d\!\left(\frac{1+t^{2}}{1-t^{2}}\right). \end{equation*}