跳到主要内容

2 Continuity of Functions

2.1 Cardinality of Sets

Cardinality of Sets

Let N\mathbb{N}^* be the set of all positive integers, and

Nn={1,2,,n}.\begin{equation*} N_n = \{1, 2, \cdots, n\}. \end{equation*}

(1)\text{(1)}\quadIf there exists a positive integer nn such that set ANnA \sim N_n, then AA is called a finite set. The empty set is also considered a finite set.

(2)\text{(2)}\quadIf set AA is not a finite set, then AA is called an infinite set.

(3)\text{(3)}\quadIf ANA \sim \mathbb{N}^*, then AA is called a countable set.

(4)\text{(4)}\quadIf AA is neither a finite set nor a countable set, then AA is called an uncountable set.

(5)\text{(5)}\quadIf AA is a finite set or AA is a countable set, then AA is called at most countable.

Theorem 2.1. Every infinite subset of a countable set AA is a countable set.

Theorem 2.2. Let {En}\{E_n\} (n=1,2,3,n=1, 2, 3, \cdots) be a sequence of at most countable sets. Let

S=n=1En,\begin{equation*} S = \bigcup_{n=1}^{\infty} E_n, \end{equation*}

then SS is an at most countable set.

2.2 Elementary Functions

Constant Function

f(x)=c,cR.\begin{equation*} f(x) = c, \quad c \in \mathbb{R}. \end{equation*}
  • Domain: R\mathbb{R}.

  • Range: {c}\{c \}.

Identity Function

f(x)=x.\begin{equation*} f(x) = x. \end{equation*}
  • Domain: R\mathbb{R}.

  • Range: R\mathbb{R}.

Exponential Function

f(x)=ax,a>0,  a1.\begin{equation*} f(x) = a^x, \quad a>0,\; a\neq1. \end{equation*}
  • Domain: R\mathbb{R}.
  • Range: (0,+)(0, +\infty).
  • Special case: f(x)=exf(x) = e^x is the natural exponential function.

Logarithmic Function

f(x)=logax,a>0,  a1.\begin{equation*} f(x) = \log_a x, \quad a>0,\; a\neq1. \end{equation*}
  • Domain: (0,+)(0, +\infty).
  • Range: R\mathbb{R}.
  • Special case: f(x)=lnx=logexf(x) = \ln x = \log_e x.
  • Inverse: (logax)1=ax.(\log_a x)^{-1} = a^x.

Power Function

f(x)=xa=ealnx,aR.\begin{equation*} f(x) = x^a = e ^ {a \ln x}, \quad a \in \mathbb{R}. \end{equation*}
  • Domain: (0,+)(0, +\infty).
  • Range: (0,+)(0, +\infty).
  • Typical examples: x2,  x3,  x,  1xx^2,\; x^3,\; \sqrt{x},\; \dfrac{1}{x}.

Trigonometric Function

sinx,  cosx,  tanx=sinxcosx,  cotx=cosxsinx,  secx=1cosx,  cscx=1sinx.\begin{equation*} \sin x,\; \cos x,\; \tan x = \frac{\sin x}{\cos x},\; \cot x = \frac{\cos x}{\sin x},\; \sec x = \frac{1}{\cos x},\; \csc x = \frac{1}{\sin x}. \end{equation*}
  • Domain and Range:
FunctionDomainRange
sinx\sin xR\mathbb{R}[1,1][-1,1]
cosx\cos xR\mathbb{R}[1,1][-1,1]
tanx\tan xxπ/2+kπx\neq \pi/2 + k\piR\mathbb{R}

Hyperbolic Function

sinhx=exex2,coshx=ex+ex2,tanhx=sinhxcoshx=exexex+ex.\begin{equation*} \sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}, \qquad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}. \end{equation*}
  • Domain and Range:
FunctionDomainRange
sinhx\sinh xR\mathbb{R}R\mathbb{R}
coshx\cosh xR\mathbb{R}[1,+)[1,\,+\infty)
tanhx\tanh xR\mathbb{R}(1,1)(-1,\,1)
Theorems
  1. sin(A±B)=sinAcosB±cosAsinB\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B\\.

  2. cos(A±B)=cosAcosBsinAsinB\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B\\.

  3. tan(A±B)=tanA±tanB1tanAtanB.\tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}.

  4. sin(2A)=2sinAcosA\sin(2A)=2\sin A\cos A.

  5. cos(2A)=cos2Asin2A=2cos2A1=12sin2A\cos(2A)=\cos^2A-\sin^2A=2\cos^2A-1=1-2\sin^2A.

  6. tan(2A)=2tanA1tan2A\tan(2A)=\frac{2\tan A}{1-\tan^2A}.

  7. sinA+sinB=2sinA+B2cosAB2\sin A+\sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}.

  8. sinAsinB=2cosA+B2sinAB2\sin A-\sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}.

  9. cosA+cosB=2cosA+B2cosAB2\cos A+\cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}.

  10. cosAcosB=2sinA+B2sinAB2\cos A-\cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}.

  11. sinAsinB=12[cos(AB)cos(A+B)]\sin A\sin B = \tfrac{1}{2}\big[\cos(A-B)-\cos(A+B)\big].

  12. cosAcosB=12[cos(AB)+cos(A+B)]\cos A\cos B = \tfrac{1}{2}\big[\cos(A-B)+\cos(A+B)\big].

  13. sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \tfrac{1}{2}\big[\sin(A+B)+\sin(A-B)\big].

  14. For angles θ\theta in the interval (0,π2):(0,\tfrac{\pi}{2}): sinθ<θ<tanθ\sin\theta < \theta < \tan\theta.

  15. sin(2x)=2sinxcosx\sin(2x) = 2 \sin x \cos x.

  16. cos(2x)=cos2xsin2x=2cos2x1=12sin2x\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x.

  17. sinh(2x)=2sinhxcoshx\sinh(2x) = 2 \sinh x \cosh x.

  18. cosh(2x)=cosh2x+sinh2x=2cosh2x1=1+2sinh2x\cosh(2x) = \cosh^2 x + \sinh^2 x = 2\cosh^2 x - 1 = 1 + 2\sinh^2 x.

  19. asinh(x)=ln ⁣(x+x2+1)\operatorname{asinh}(x) = \ln\!\left(x + \sqrt{x^2 + 1}\right).

  20. acosh(x)=ln ⁣(x+x1x+1)\operatorname{acosh}(x) = \ln\!\left(x + \sqrt{x - 1}\sqrt{x + 1}\right).

Inverse Trigonometric Function

arcsinx,arccosx,arctanx.\begin{equation*} \arcsin x,\quad \arccos x,\quad \arctan x. \end{equation*}
  • Domain and Range:
FunctionDomainRange
arcsinx\arcsin x[1,1][-1,1][π/2, π/2][-\pi/2,\ \pi/2]
arccosx\arccos x[1,1][-1,1][0, π][0,\ \pi]
arctanx\arctan xR\mathbb{R}(π/2, π/2)(-\pi/2,\ \pi/2)

Elementary Function

If f,gf,g are elementary functions, then

f+g,fg,fg,fg  (g0),fg\begin{equation*} f+g,\quad f-g,\quad f\cdot g,\quad \frac{f}{g}\;(g\neq0),\quad f\circ g \end{equation*}

are all elementary functions (in their domains of definition).

2.3 Limit of Functions

Limits of Function

A real number x0x_0 is called an accumulation point (or limit point) of a set IRI \subseteq \mathbb{R} if:

ε>0,  xI such that 0<xx0<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists x \in I \text{ such that } 0 < |x - x_0| < \varepsilon. \end{equation*}

Let f:IRf : I \to \mathbb{R} and let x0x_0 be an accumulation point of II. We say that the limit of f(x)f(x) as xx approaches x0x_0 is ARA \in \mathbb{R}, written as

limxx0f(x)=A.\begin{equation*} \lim_{x \to x_0} f(x) = A. \end{equation*}

if and only if

ε>0,  δ>0 such that xI,  0<xx0<δf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists \delta > 0 \text{ such that } \forall x \in I,\; 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}
  • The right-hand limit of a function ff at x0x_0 is denoted by

    limxx0+f(x)=A,\begin{equation*} \lim_{x \to x_0^+} f(x) = A, \end{equation*}

    which means:

    ε>0,  δ>0 such that xI,  x0<x<x0+δf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists \delta > 0 \text{ such that } \forall x \in I,\; x_0 < x < x_0 + \delta \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}
  • Similarly, the left-hand limit is defined by

    limxx0f(x)=A.\begin{equation*} \lim_{x \to x_0^-} f(x) = A. \end{equation*}

Theorem 2.3. A necessary and sufficient condition for the function ff to have a limit ll at x0x_0 is that, for any sequence {xnx0:n=1,2,3,}\{x_n \neq x_0 : n=1, 2, 3, \cdots\} converging to x0x_0, the sequence {f(xn)}\{f(x_n)\} has a limit ll.

Theorem 2.4. Let limxx0f(x)\lim\limits_{x \to x_0} f(x) and limxx0g(x)\lim\limits_{x \to x_0} g(x) exist. Then:

(1)limxx0(f±g)(x)=limxx0f(x)±limxx0g(x)\text{(1)}\quad\lim\limits_{x \to x_0} (f \pm g)(x) = \lim\limits_{x \to x_0} f(x) \pm \lim\limits_{x \to x_0} g(x);

(2)limxx0fg(x)=limxx0f(x)limxx0g(x)\text{(2)}\quad\lim\limits_{x \to x_0} fg(x) = \lim\limits_{x \to x_0} f(x) \cdot \lim\limits_{x \to x_0} g(x);

(3)limxx0fg(x)=limxx0f(x)limxx0g(x)\text{(3)}\quad\lim\limits_{x \to x_0} \frac{f}{g}(x) = \frac{\lim\limits_{x \to x_0} f(x)}{\lim\limits_{x \to x_0} g(x)}, where limxx0g(x)0\lim\limits_{x \to x_0} g(x) \neq 0.

Neighborhood and Deleted Neighborhood

Bδ(x0)={x:xx0<δ},Bδ(x˚0)={x:0<xx0<δ}.\begin{equation*} B_\delta(x_0) = \{x : |x - x_0| < \delta\}, \quad B_\delta(\mathring{x}_0) = \{x : 0 < |x - x_0| < \delta\}. \end{equation*}

We call Bδ(x0)B_\delta(x_0) the neighborhood of x0x_0 centered at x0x_0 with radius δ\delta (abbreviated as the neighborhood of x0x_0), and Bδ(x˚0)B_\delta(\mathring{x}_0) the deleted neighborhood of x0x_0 centered at x0x_0 with radius δ\delta (abbreviated as the deleted neighborhood of x0x_0).

Theorem 2.5. A necessary and sufficient condition for the function ff to have a limit at x0x_0 is that for any given ε>0\varepsilon > 0, there exists a δ>0\delta > 0 such that for any x1,x2Bδ(x˚0)x_1, x_2 \in B_\delta(\mathring{x}_0), we have f(x1)f(x2)<ε|f(x_1) - f(x_2)| < \varepsilon.

Theorem 2.6. Let limxx0f(x)=l\lim\limits_{x \to x_0} f(x) = l and limtt0g(t)=x0\lim\limits_{t \to t_0} g(t) = x_0. If in some neighborhood Bη(t0)B_{\eta}(t_0) of t0t_0, g(t)x0g(t) \neq x_0, then

limtt0f(g(t))=l.\begin{equation*} \lim_{t \to t_0} f(g(t)) = l. \end{equation*}

2.4 Infinite Limits of Functions

Limit at Infinity

limx+f(x)=A\begin{equation*} \lim_{x \to +\infty} f(x) = A \end{equation*}

means that

ε>0,  M>0 such that xI,  x>Mf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; x > M \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}

Similarly,

limxf(x)=A\begin{equation*} \lim_{x \to -\infty} f(x) = A \end{equation*}

means

ε>0,  M>0 such that xI,  x<Mf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; x < -M \Rightarrow |f(x) - A| < \varepsilon. \end{equation*} limxf(x)=A\begin{equation*} \lim_{x \to \infty} f(x) = A \end{equation*}

means

ε>0,  M>0 such that xI,  x>Mf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; |x| > M \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}

Definition. Let cc be one of x0,  x0+,  x0,  ,  +,  x_0,\; x_0^+,\; x_0^-,\; -\infty,\; +\infty,\; \infty. The neighborhood and deleted neighborhood of cc are defined as follows:

ccNeighborhood of ccDeleted neighborhood of cc
x0x_0An open interval JJ containing x0x_0J{x0}J \setminus \{x_0\}
x0+x_0^+[x0,x0+δ)[x_0,\, x_0+\delta)(x0,x0+δ)(x_0,\, x_0+\delta)
x0x_0^-(x0δ,x0](x_0-\delta,\, x_0](x0δ,x0)(x_0-\delta,\, x_0)
-\infty(,b)(-\infty,\, b)(,b)(-\infty,\, b)
++\infty(a,+)(a,\, +\infty)(a,+)(a,\, +\infty)
\infty(,b)(a,+)(-\infty,\, b)\,\cup\,(a,\, +\infty)(,b)(a,+)(-\infty,\, b)\,\cup\,(a,\, +\infty)

General Definition of Limit

Let cc be one of x0,  x0+,  x0,  ,  +,  x_0,\; x_0^+,\; x_0^-,\; -\infty,\; +\infty,\; \infty, and let AA be a real number or one of ,  +,  -\infty,\; +\infty,\; \infty. We say that limxcf(x)=A\lim\limits_{x \to c} f(x) = A iff:

For every neighborhood VV of AA, there exists a deleted neighborhood WW of cc such that for all xIWx \in I \cap W, we have f(x)Vf(x) \in V.

Infinite Quantity

When xcx \to c, if f(x)f(x) grows without bound, we say f(x)f(x) is an infinite quantity (or positive/negative infinite quantity).

If

limxcf(x)=(i.e. limxcf(x)=+ or limxcf(x)=),\begin{equation*} \lim_{x \to c} f(x) = \infty \quad \text{(i.e. } \lim_{x \to c} f(x) = +\infty \text{ or } \lim_{x \to c} f(x) = -\infty \text{)}, \end{equation*}

then f(x)f(x) diverges to infinity as xx approaches cc.

Theorem 2.7.

limx(1+1x)x=e.\begin{equation*} \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e. \end{equation*}

2.5 Big O and Small o

Big O

When xcx \to c, if f(x)=O(g(x))f(x) = O(g(x)), it means:

There exists M>0M > 0 and a deleted neighborhood WW of cc such that for all xIWx \in I \cap W, we have f(x)Mg(x)|f(x)| \le M |g(x)|.

  • If f1=O(g)f_1 = O(g) and f2=O(g)f_2 = O(g) as xcx \to c, then f1+f2=O(g).f_1 + f_2 = O(g).

  • If f1=O(g1)f_1 = O(g_1) and f2=O(g2)f_2 = O(g_2) as xcx \to c, then f1f2=O(g1g2).f_1 f_2 = O(g_1 g_2).

Same Order

When xcx \to c, if ff and gg are of the same order, denoted f=Θ(g),xc,f = \Theta(g), \quad x \to c, it means:

f=O(g) and g=O(f),\begin{equation*} f = O(g) \text{ and } g = O(f), \end{equation*}

that is, there exist M>0M > 0 and a deleted neighborhood WW of cc such that for all xWx \in W,

1Mg(x)f(x)Mg(x).\begin{equation*} \frac{1}{M} |g(x)| \le |f(x)| \le M |g(x)|. \end{equation*}

Small o

When xcx \to c, if f(x)=o(g(x))f(x) = o(g(x)), it means:

For every ε>0\varepsilon > 0, there exists a deleted neighborhood WW of cc such that for all xWx \in W,

f(x)εg(x).\begin{equation*} |f(x)| \le \varepsilon |g(x)|. \end{equation*}
  • If f1=o(g)f_1 = o(g) and f2=o(g)f_2 = o(g) as xcx \to c, then f1+f2=o(g).f_1 + f_2 = o(g).

  • If f1=o(g1)f_1 = o(g_1) and f2=O(g2)f_2 = O(g_2) as xcx \to c, then f1f2=o(g1g2).f_1 f_2 = o(g_1 g_2).

Asymptotic Equivalence

When xcx \to c, functions ff and gg are said to be asymptotically equivalent, written as fgf \sim g, if

f=g+o(g).\begin{equation*} f = g + o(g). \end{equation*}

That is, for every ε>0\varepsilon > 0, there exists a deleted neighborhood WW of cc such that for all xWx \in W,

f(x)g(x)εg(x).\begin{equation*} |f(x) - g(x)| \le \varepsilon |g(x)|. \end{equation*}

Theorem 2.8. If xcx \to c, and f+o(f)=G+o(g),G=O(g),f + o(f) = G + o(g), \quad G = O(g), then f=G+o(g) f = G + o(g).

Corollary 1. If xcx \to c, and ff is equivalent to gg, then gg is equivalent to ff.

Corollary 2. If xcx \to c, and ff is equivalent to gg, and gg is equivalent to hh, then ff is equivalent to hh.

2.6 Continuous Functions

Continuous Function

Let f:[a,b]Rf: [a, b] \to \mathbf{R}. We say that the function ff is continuous at the point x0(a,b)x_0 \in (a, b) if

limxx0f(x)=f(x0).\begin{equation*} \lim_{x \to x_0} f(x) = f(x_0). \end{equation*}

That is to say, for any given ε>0\varepsilon > 0, there exists a suitable δ>0\delta > 0, such that when xx0<δ|x - x_0| < \delta, we have

f(x)f(x0)<ε.\begin{equation*} |f(x) - f(x_0)| < \varepsilon. \end{equation*}
  • We say that ff is right-continuous at x0x_0 if ε>0\forall \varepsilon > 0, δ>0\exists \delta > 0 such that for all xIx \in I.
x0x<x0+δ    f(x)f(x0)<ε.\begin{equation*} x_0 \le x < x_0 + \delta \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon. \end{equation*}
  • Similarly, ff is left-continuous at x0x_0 if ε>0\forall \varepsilon > 0, δ>0\exists \delta > 0 such that for all xIx \in I.
x0δ<xx0    f(x)f(x0)<ε.\begin{equation*} x_0 - \delta < x \le x_0 \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon. \end{equation*} f is continuous at x0    f is both right-continuous and left-continuous at x0.\begin{equation*} f \text{ is continuous at } x_0 \;\Longleftrightarrow\; f \text{ is both right-continuous and left-continuous at } x_0. \end{equation*}

Theorem 2.9. If both ff and gg are continuous at x0x_0, then

f±g and fg are continuous at x0.\begin{equation*} f \pm g \text{ and } f g \text{ are continuous at } x_0. \end{equation*}

Moreover, if g(x0)0g(x_0) \neq 0, then

fg is continuous at x0.\begin{equation*} \dfrac{f}{g} \text{ is continuous at } x_0. \end{equation*}

Theorem 2.10. Let ff and gg be functions such that:

{f is continuous at x0,g is continuous at y0=f(x0),\begin{equation*} \begin{cases} f \text{ is continuous at } x_0, \\ g \text{ is continuous at } y_0 = f(x_0), \end{cases} \end{equation*}

then the composite function gfg \circ f is continuous at x0x_0.

Theorem 2.11. Let I,JRI, J \subseteq \mathbb{R} be intervals, and let f:IJf: I \to J be monotone and onto. Then ff is a continuous function.

Removable Discontinuity

A point x0x_0 is called a removable discontinuity of a function ff if:

(1)x0\text{(1)}\quad x_0 is a limit point of the domain II of ff, and the limit

limxx0f(x)\begin{equation*} \lim_{x \to x_0} f(x) \end{equation*}

exists;

(2)f\text{(2)}\quad f is either undefined at x0x_0, or

f(x0)limxx0f(x).\begin{equation*} f(x_0) \ne \lim_{x \to x_0} f(x). \end{equation*}
  • In other words, ff is not continuous at x0x_0, but it can be made continuous by appropriately redefining the value f(x0)f(x_0).

Jump Discontinuity

A point x0x_0 is called a jump discontinuity if both one-sided limits exist but are not equal:

limxx0f(x)andlimxx0+f(x).\begin{equation*} \lim_{x \to x_0^-} f(x) \quad \text{and} \quad \lim_{x \to x_0^+} f(x). \end{equation*}

Classification

  • Type I discontinuities: include both removable and jump discontinuities.

  • Type II discontinuities: all other discontinuities that do not fall into the above categories.

2.7 Uniform Continuity of Functions

Uniform Continuity

A function ff is said to be uniformly continuous on a set KK, if for every ε>0\varepsilon > 0, there exists a δε>0\delta_\varepsilon > 0 such that

x,yK,xy<δε    f(x)f(y)<ε.\begin{equation*} \forall x, y \in K, \quad |x - y| < \delta_\varepsilon \implies |f(x) - f(y)| < \varepsilon. \end{equation*}
  • The function ff is not uniformly continuous on a set KK if and only if there exists an ε0>0\varepsilon_0 > 0 such that for every nNn \in \mathbb{N}^*, one can find two points in KK, denoted as sns_n and tnt_n, such that although sntn<1/n|s_n - t_n| < 1/n, we have f(sn)f(tn)ε0.\begin{equation*} |f(s_n) - f(t_n)| \geqslant \varepsilon_0. \end{equation*}

2.8 Properties of Continuous Functions on Bounded Closed Intervals

Theorem 2.12. Let the function ff be continuous on [a,b][a, b], then ff must be uniformly continuous on [a,b][a, b].

Theorem 2.13. A continuous function on a bounded closed interval must be bounded on that interval.

Theorem 2.14. Let ff be continuous on [a,b][a, b]. Let

M=supx[a,b]f(x),m=infx[a,b]f(x),\begin{equation*} M = \sup_{x \in [a, b]} f(x), \quad m = \inf_{x \in [a, b]} f(x), \end{equation*}

then there must exist x,x[a,b]x^*, x_* \in [a, b], such that

f(x)=M,f(x)=m.\begin{equation*} f(x^*) = M, \quad f(x_*) = m. \end{equation*}

Theorem 2.15. If ff is continuous on the interval [a,b][a,b] and f(a)f(b)f(a) \ne f(b), then every real number between f(a)f(a) and f(b)f(b) is attained as a function value of ff on [a,b][a,b].