跳到主要内容

Exercises

  1. Assume that limnan=L\lim\limits_{n\to\infty} a_n = L,Prove that

    limna1+2a2++nan1+2++n=L.\begin{equation*} \lim_{n\to\infty} \frac{a_1 + 2 a_2 + \cdots + n a_n}{1+2+\cdots+n} = L. \end{equation*}
  2. Let {xn}\{x_n\} be a sequence in (0,1)(0,1) whose terms are all distinct.

    a. Prove that: if there exists a(0,1)a \in (0,1) such that for all nN+n \in \mathbb{N}^+,

    xn+2xnxn+1xn(a,1),\begin{equation*} \frac{x_{n+2} - x_n}{x_{n+1} - x_n} \in (a,1), \end{equation*}

    then the sequence {xn}\{x_n\} is convergent.

    b. Let c(0,34)c \in \left(0,\frac{3}{4}\right), and let {xn}\{x_n\} satisfy x1(0,1)x_1 \in (0,1) and for all nN+n \in \mathbb{N}^+,

    xn+1=1cxn2.\begin{equation*} x_{n+1} = 1 - c x_n^2. \end{equation*}

    Prove that {xn}\{x_n\} is convergent and find its limit.

  3. Assume that

    limn+an=A,AR or A=+ or A=.\begin{equation*} \lim_{n\to +\infty} a_n = A,\qquad A \in \mathbb{R}\ \text{or}\ A = +\infty\ \text{or}\ A = -\infty. \end{equation*}

    For each positive integer nn, let tn1,,tnnt_{n1},\ldots,t_{nn} be nn non-negative real numbers satisfying

    tn1++tnn=1,\begin{equation*} t_{n1} + \cdots + t_{nn} = 1, \end{equation*}

    and for any fixed positive integer kk,

    limn+tnk=0.\begin{equation*} \lim_{n\to+\infty} t_{nk} = 0. \end{equation*}

    Prove that

    limn+(tn1a1++tnnan)=A.\begin{equation*} \lim_{n\to+\infty} \left(t_{n1}a_1 + \cdots + t_{nn}a_n\right) = A. \end{equation*}
  4. Assume that q(x)<0q(x) < 0 for all x(a,b)x \in (a,b). Consider the boundary value problem

    {y+p(x)y+q(x)y=r(x),a<x<b,y(a)=A,y(b)=B.\begin{equation*} \begin{cases} y'' + p(x)y' + q(x)y = r(x), & a < x < b,\\[6pt] y(a) = A,\quad y(b) = B. \end{cases} \end{equation*}

    Prove that: If the boundary value problem has a solution, then this solution must be unique.

  5. Let ff be differentiable on [0,+)[0,+\infty), satisfying

    f(0)=0,f is strictly increasing.\begin{equation*} f(0)=0, \qquad f' \text{ is strictly increasing}. \end{equation*}

    Prove that the function

    f(x)x\begin{equation*} \frac{f(x)}{x} \end{equation*}

    is strictly increasing on (0,+)(0, +\infty).

  6. Let 0<a<b0 < a < b. Compare the sizes of the following three quantities:

    ab,balnblna,a+b2.\begin{equation*} \sqrt{ab}, \qquad \frac{b-a}{\ln b - \ln a}, \qquad \frac{a+b}{2}. \end{equation*}
  7. Let ff be a CC^\infty function and define

    g(x)=f(lnx).\begin{equation*} g(x) = f(\ln x). \end{equation*}

    Prove that for every positive integer nn,

    xndnydxn=(ddt(n1))(ddt1)ddtf(t),\begin{equation*} x^n \frac{d^n y}{dx^n} = \left( \frac{d}{dt} - (n-1) \right) \cdots \left( \frac{d}{dt} - 1 \right) \frac{d}{dt} f(t), \end{equation*}

    where

    t=lnx.\begin{equation*} t = \ln x. \end{equation*}
  8. Define

    Pn(x)=exdndxn(exxn).\begin{equation*} P_n(x) = e^x \frac{d^n}{dx^n}\left( e^{-x} x^n \right). \end{equation*}

    Prove that:

Pn(x) has n distinct positive zeros.\begin{equation*} P_n(x) \text{ has } n \text{ distinct positive zeros.} \end{equation*}
  1. Compute the limit

    limx01cosxcos2xcos3x3x2.\begin{equation*} \lim_{x \to 0} \frac{ 1 - \cos x \sqrt{\cos 2x}\, \sqrt[3]{\cos 3x} }{ x^2 }. \end{equation*}
  2. Evaluate the integral:

dxsin3x+cos3x.\begin{equation*} \int \frac{dx}{\sin^3 x + \cos^3 x}. \end{equation*}
  1. Evaluate the integral:

    tan(x)2+4+cosxdx\begin{equation*} \int \tan(x)\,\sqrt{\,2 + \sqrt{4 + \cos x}\,}\,dx \end{equation*}
  2. Evaluate the integral:

    0dx(x+1+2x)2\begin{equation*} \int_{0}^{\infty} \frac{dx}{\bigl(x + 1 + \lfloor 2\sqrt{x} \rfloor\bigr)^2} \end{equation*}
  3. Prove the following inequalities:

    a. For any x[0,π]x \in [0,\pi] and t[0,1]t \in [0,1], we have sin(tx)tsinx.\sin(tx) \ge t \sin x.

    b. For any x0x \ge 0 and p>0p>0, we have

    0xsinupduxsinxpp+1.\begin{equation*} \int_{0}^{x} |\sin u|^{p}\, du \ge \frac{x\, |\sin x|^{p}}{p+1}. \end{equation*}
  4. Find an integrable function ff on [0,1][0,1] such that for every x[0,1]x \in [0,1].

    f(x)=1+(1x)0xyf(y)dy+xx1(1y)f(y)dy.\begin{equation*} f(x) = 1 + (1-x) \int_{0}^{x} y f(y)\, dy + x \int_{x}^{1} (1-y) f(y)\, dy . \end{equation*}
  5. 02πdθAcos2θ+2Bcosθsinθ+Csin2θ,A>0,  AC>B2\begin{equation*} \int_{0}^{2\pi} \frac{d\theta}{ A \cos^2 \theta + 2B \cos \theta \sin \theta + C \sin^2 \theta }, \qquad A > 0,\; AC > B^2 \end{equation*}
  6. 0a(a23x13)32dx\begin{equation*} \int_{0}^{a} \left( a^{\frac{2}{3}} - x^{\frac{1}{3}} \right)^{\frac{3}{2}} \, dx \end{equation*}
  7. limn1lnn0π/2sin2(nx)sinxdx.\begin{equation*} \lim_{n \to \infty} \frac{1}{\ln n} \int_{0}^{\pi/2} \frac{\sin^2 (n x)}{\sin x}\, dx. \end{equation*}