6 Ordinary Differential Equations
Basic Concepts of Differential Equations
Differential Equation (System) : An equation (or system of equations) containing unknown functions and their derivatives.
Order of a Differential Equation (System) : The order of the highest-order derivative of the unknown functions involved in the equation.
Ordinary Differential Equation (ODE) : A differential equation (or system) where all unknown functions are functions of a single independent variable.
F ( x , y , y ′ , … , y ( n ) ) = 0 \begin{equation*}
F(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n)}) = 0
\end{equation*} F ( x , y , y ′ , … , y ( n ) ) = 0
Where y ( x ) = ( y 1 ( x ) , … , y m ( x ) ) \mathbf{y}(x) = (y_1(x), \dots, y_m(x)) y ( x ) = ( y 1 ( x ) , … , y m ( x )) is a (set of) unknown function(s).
y ( n ) = f ( x , y , y ′ , … , y ( n − 1 ) ) \begin{equation*}
\mathbf{y}^{(n)} = f(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n-1)})
\end{equation*} y ( n ) = f ( x , y , y ′ , … , y ( n − 1 ) )
Solution of a Differential Equation
A solution of the differential equation F ( x , y , y ′ , … , y ( n ) ) = 0 F(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n)}) = 0 F ( x , y , y ′ , … , y ( n ) ) = 0 is a function y = y ( x ) \mathbf{y} = \mathbf{y}(x) y = y ( x ) that satisfies the equation for all x x x in its domain:
F ( x , y ( x ) , y ′ ( x ) , … , y ( n ) ( x ) ) = 0 , ∀ x \begin{equation*}
F(x, \mathbf{y}(x), \mathbf{y}'(x), \dots, \mathbf{y}^{(n)}(x)) = 0, \quad \forall x
\end{equation*} F ( x , y ( x ) , y ′ ( x ) , … , y ( n ) ( x )) = 0 , ∀ x
Initial Value Problem (Cauchy Problem)
An Initial Value Problem (also known as a Cauchy Problem ) consists of a differential equation along with a set of initial conditions at a specific point x 0 x_0 x 0 :
{ F ( x , y , y ′ , … , y ( n ) ) = 0 , y ( x 0 ) = C 0 , y ′ ( x 0 ) = C 1 , ⋮ y ( n − 1 ) ( x 0 ) = C n − 1 \begin{equation*}
\begin{cases}
F(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n)}) = 0, \\
\mathbf{y}(x_0) = \mathbf{C}_0, \\
\mathbf{y}'(x_0) = \mathbf{C}_1, \\
\vdots \\
\mathbf{y}^{(n-1)}(x_0) = \mathbf{C}_{n-1}
\end{cases}
\end{equation*} ⎩ ⎨ ⎧ F ( x , y , y ′ , … , y ( n ) ) = 0 , y ( x 0 ) = C 0 , y ′ ( x 0 ) = C 1 , ⋮ y ( n − 1 ) ( x 0 ) = C n − 1
Where C 0 , C 1 , … , C n − 1 \mathbf{C}_0, \mathbf{C}_1, \dots, \mathbf{C}_{n-1} C 0 , C 1 , … , C n − 1 are given constant vectors. The goal is to find a specific solution y = y ( x ) \mathbf{y} = \mathbf{y}(x) y = y ( x ) that satisfies both the equation and these conditions.
For an n n n -th order differential equation F ( x , y , y ′ , … , y ( n ) ) = 0 F(x, y, y', \dots, y^{(n)}) = 0 F ( x , y , y ′ , … , y ( n ) ) = 0 , the General Solution y ( x ) y(x) y ( x ) is a family of functions that contains n n n arbitrary constants :
Direction Fields and Integral Curves: Geometric Meaning of First-Order Differential Equations
d y d x = f ( x , y ) , y = y ( x ) is a solution ⟺ y ′ ( x ) = f ( x , y ( x ) ) . \begin{equation*}
\frac{dy}{dx} = f(x,y), \quad y = y(x) \text{ is a solution }
\Longleftrightarrow
y'(x) = f(x, y(x)).
\end{equation*} d x d y = f ( x , y ) , y = y ( x ) is a solution ⟺ y ′ ( x ) = f ( x , y ( x )) .
Slope field : At each point ( x , y ) (x,y) ( x , y ) , a slope value f ( x , y ) f(x,y) f ( x , y ) is prescribed.
Direction field : At each point ( x , y ) (x,y) ( x , y ) , a line with direction
( 1 , f ( x , y ) ) \begin{equation*}
(1,\, f(x,y))
\end{equation*} ( 1 , f ( x , y ))
is assigned.
Integral curve : A curve γ \gamma γ is called an integral curve if, at every point ( x , y ) (x,y) ( x , y ) it passes through, the slope of its tangent line equals
f ( x , y ) . \begin{equation*}
f(x,y).
\end{equation*} f ( x , y ) .
General Definition of Direction Fields and Integral Curves
Direction field (line field) : At each point P P P in space, a straight line l ( P ) l(P) l ( P ) is assigned.
Integral curve of a direction field : A curve γ \gamma γ is called an integral curve if it is everywhere tangent to the direction field.
Planar Direction Field
P ( x , y ) d x + Q ( x , y ) d y = 0. \begin{equation*}
P(x,y)\,dx + Q(x,y)\,dy = 0.
\end{equation*} P ( x , y ) d x + Q ( x , y ) d y = 0.
Integral Curve
Let an integral curve be parametrized as
( x ( t ) , y ( t ) ) . \begin{equation*}
(x(t),\, y(t)).
\end{equation*} ( x ( t ) , y ( t )) .
Then it satisfies
P ( x ( t ) , y ( t ) ) x ′ ( t ) + Q ( x ( t ) , y ( t ) ) y ′ ( t ) = 0 , ∀ t . \begin{equation*}
P\bigl(x(t),y(t)\bigr)\,x'(t)
\;+\;
Q\bigl(x(t),y(t)\bigr)\,y'(t)
= 0,
\quad \forall\, t.
\end{equation*} P ( x ( t ) , y ( t ) ) x ′ ( t ) + Q ( x ( t ) , y ( t ) ) y ′ ( t ) = 0 , ∀ t .
Separable Differential Equations
p ( x ) d x + q ( y ) d y = 0. \begin{equation*}
p(x)\,dx + q(y)\,dy = 0.
\end{equation*} p ( x ) d x + q ( y ) d y = 0.
Assume that p p p and q q q are continuous and admit antiderivatives
P P P and Q Q Q , respectively.
Let an integral curve be parametrized by
( x ( t ) , y ( t ) ) . \begin{equation*}
(x(t),\, y(t)).
\end{equation*} ( x ( t ) , y ( t )) .
Then along the curve,
0 = p ( x ( t ) ) d x ( t ) + q ( y ( t ) ) d y ( t ) \begin{equation*}
0
= p\bigl(x(t)\bigr)\,dx(t) + q\bigl(y(t)\bigr)\,dy(t)
\end{equation*} 0 = p ( x ( t ) ) d x ( t ) + q ( y ( t ) ) d y ( t )
= d P ( x ( t ) ) + d Q ( y ( t ) ) \begin{equation*}
= dP\bigl(x(t)\bigr) + dQ\bigl(y(t)\bigr)
\end{equation*} = d P ( x ( t ) ) + d Q ( y ( t ) )
= ( P ( x ( t ) ) + Q ( y ( t ) ) ) ′ d t . \begin{equation*}
= \bigl(P(x(t)) + Q(y(t))\bigr)' \, dt.
\end{equation*} = ( P ( x ( t )) + Q ( y ( t )) ) ′ d t .
Therefore,
P ( x ( t ) ) + Q ( y ( t ) ) = C . \begin{equation*}
P(x(t)) + Q(y(t)) = C.
\end{equation*} P ( x ( t )) + Q ( y ( t )) = C .
Equivalently, the general solution can be written as
P ( x ) + Q ( y ) = C . \begin{equation*}
P(x) + Q(y) = C.
\end{equation*} P ( x ) + Q ( y ) = C .
Homogeneous Differential Equations
y ′ = f ( y x ) . \begin{equation*}
y' = f\!\left(\frac{y}{x}\right).
\end{equation*} y ′ = f ( x y ) .
Introduce the substitution
p = y x , z = ln ∣ x ∣ . \begin{equation*}
p = \frac{y}{x},
\qquad
z = \ln |x|.
\end{equation*} p = x y , z = ln ∣ x ∣.
Then we obtain
z p ′ = x p ′ x = 1 x p x ′ = 1 y x ′ − y x = 1 f ( p ) − p . \begin{equation*}
z'_p
= \frac{x'_p}{x}
= \frac{1}{x p'_x}
= \frac{1}{y'_x - \dfrac{y}{x}}
= \frac{1}{f(p) - p}.
\end{equation*} z p ′ = x x p ′ = x p x ′ 1 = y x ′ − x y 1 = f ( p ) − p 1 .
(This is the simplest differential equation.)
Integrating, we get
z = ∫ d p f ( p ) − p = F ( p ) + C . \begin{equation*}
z
= \int \frac{dp}{f(p) - p}
= F(p) + C.
\end{equation*} z = ∫ f ( p ) − p d p = F ( p ) + C .
Since z = ln ∣ x ∣ z = \ln |x| z = ln ∣ x ∣ , it follows that
x = C 1 e F ( p ) = C 1 e F ( y / x ) . \begin{equation*}
x = C_1 e^{F(p)}
= C_1 e^{F(y/x)}.
\end{equation*} x = C 1 e F ( p ) = C 1 e F ( y / x ) .
Equivalently,
x e − F ( y / x ) = C 1 . \begin{equation*}
x\,e^{-F(y/x)} = C_1.
\end{equation*} x e − F ( y / x ) = C 1 .
y ′ = f ( a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 ) . \begin{equation*}
y'
=
f\!\left(
\frac{a_1 x + b_1 y + c_1}
{a_2 x + b_2 y + c_2}
\right).
\end{equation*} y ′ = f ( a 2 x + b 2 y + c 2 a 1 x + b 1 y + c 1 ) .
Case 1
Assume that the linear system
{ a 1 x + b 1 y + c 1 = 0 , a 2 x + b 2 y + c 2 = 0 \begin{equation*}
\begin{cases}
a_1 x + b_1 y + c_1 = 0, \\
a_2 x + b_2 y + c_2 = 0
\end{cases}
\end{equation*} { a 1 x + b 1 y + c 1 = 0 , a 2 x + b 2 y + c 2 = 0
has a solution ( x 0 , y 0 ) (x_0, y_0) ( x 0 , y 0 ) .
This point serves as a center of symmetry of the direction field.
Translation of Variables
Introduce the change of variables
ξ = x − x 0 , η = y − y 0 . \begin{equation*}
\xi = x - x_0,
\qquad
\eta = y - y_0.
\end{equation*} ξ = x − x 0 , η = y − y 0 .
Then the differential equation becomes
η ξ ′ = f ( a 1 ξ + b 1 η a 2 ξ + b 2 η ) = f ( a 1 + b 1 η ξ a 2 + b 2 η ξ ) . \begin{equation*}
\eta'_\xi
=
f\!\left(
\frac{a_1 \xi + b_1 \eta}
{a_2 \xi + b_2 \eta}
\right)
=
f\!\left(
\frac{a_1 + b_1 \dfrac{\eta}{\xi}}
{a_2 + b_2 \dfrac{\eta}{\xi}}
\right).
\end{equation*} η ξ ′ = f ( a 2 ξ + b 2 η a 1 ξ + b 1 η ) = f a 2 + b 2 ξ η a 1 + b 1 ξ η .
This is a homogeneous differential equation .
Case 2
Assume that the linear system
{ a 1 x + b 1 y + c 1 = 0 , a 2 x + b 2 y + c 2 = 0 \begin{equation*}
\begin{cases}
a_1 x + b_1 y + c_1 = 0, \\
a_2 x + b_2 y + c_2 = 0
\end{cases}
\end{equation*} { a 1 x + b 1 y + c 1 = 0 , a 2 x + b 2 y + c 2 = 0
has no solution .
The differential equation can be rewritten as
y ′ = f ( α + β a 2 x + b 2 y + c 2 ) , \begin{equation*}
y'
=
f\!\left(
\alpha + \frac{\beta}{a_2 x + b_2 y + c_2}
\right),
\end{equation*} y ′ = f ( α + a 2 x + b 2 y + c 2 β ) ,
where α \alpha α and β \beta β are constants.
Change of Variables
Introduce the new variable
ξ = a 2 x + b 2 y + c 2 . \begin{equation*}
\xi = a_2 x + b_2 y + c_2.
\end{equation*} ξ = a 2 x + b 2 y + c 2 .
Then
ξ x ′ = a 2 + b 2 y x ′ = a 2 + b 2 f ( α + β ξ ) . \begin{equation*}
\xi'_x
= a_2 + b_2 y'_x
= a_2 + b_2 f\!\left(\alpha + \frac{\beta}{\xi}\right).
\end{equation*} ξ x ′ = a 2 + b 2 y x ′ = a 2 + b 2 f ( α + ξ β ) .
This is a separable differential equation .
Linear Differential Equations
y ′ = a ( x ) y + f ( x ) . \begin{equation*}
y' = a(x)\,y + f(x).
\end{equation*} y ′ = a ( x ) y + f ( x ) .
Here f ( x ) f(x) f ( x ) is the nonhomogeneous term .
If f ( x ) = 0 f(x) = 0 f ( x ) = 0 , the equation is called a homogeneous linear equation .
If f ( x ) ≠ 0 f(x) \neq 0 f ( x ) = 0 , the equation is called a nonhomogeneous linear equation .
Homogeneous Linear Equation
The homogeneous equation
y ′ = a ( x ) y \begin{equation*}
y' = a(x)\,y
\end{equation*} y ′ = a ( x ) y
is a separable differential equation .
Separating variables, we obtain
d y y = a ( x ) d x \begin{equation*}
\frac{dy}{y} = a(x)\,dx
\end{equation*} y d y = a ( x ) d x
which implies
ln ∣ y ∣ = ∫ x 0 x a ( t ) d t + C 1 . \begin{equation*}
\ln |y|
= \int_{x_0}^{x} a(t)\,dt + C_1.
\end{equation*} ln ∣ y ∣ = ∫ x 0 x a ( t ) d t + C 1 .
Equivalently,
∣ y ∣ = e C 1 e ∫ x 0 x a ( t ) d t . \begin{equation*}
|y|
= e^{C_1}\, e^{\int_{x_0}^{x} a(t)\,dt}.
\end{equation*} ∣ y ∣ = e C 1 e ∫ x 0 x a ( t ) d t .
Hence the general solution is
y ( x ) = C e ∫ x 0 x a ( t ) d t , \begin{equation*}
y(x) = C\, e^{\int_{x_0}^{x} a(t)\,dt},
\end{equation*} y ( x ) = C e ∫ x 0 x a ( t ) d t ,
where C C C is an arbitrary constant. This family of solutions includes the particular solution y = 0 y = 0 y = 0 .
Nonhomogeneous Linear Differential Equations
y ′ = a ( x ) y + f ( x ) . \begin{equation*}
y' = a(x)\,y + f(x).
\end{equation*} y ′ = a ( x ) y + f ( x ) .
Assume a solution of the form
y ( x ) = C ( x ) e ∫ x 0 x a ( t ) d t . \begin{equation*}
y(x) = C(x)\, e^{\int_{x_0}^{x} a(t)\,dt}.
\end{equation*} y ( x ) = C ( x ) e ∫ x 0 x a ( t ) d t .
Then
f ( x ) = y ′ ( x ) − a ( x ) y ( x ) . \begin{equation*}
f(x)
= y'(x) - a(x)\,y(x).
\end{equation*} f ( x ) = y ′ ( x ) − a ( x ) y ( x ) .
Substituting y ( x ) y(x) y ( x ) into the equation, we obtain
f ( x ) = C ′ ( x ) e ∫ x 0 x a ( t ) d t + C ( x ) e ∫ x 0 x a ( t ) d t a ( x ) − a ( x ) C ( x ) e ∫ x 0 x a ( t ) d t = C ′ ( x ) e ∫ x 0 x a ( t ) d t . \begin{equation*}
\begin{aligned}
f(x)
&= C'(x)\, e^{\int_{x_0}^{x} a(t)\,dt}
+ C(x)\, e^{\int_{x_0}^{x} a(t)\,dt} a(x)
- a(x)\, C(x)\, e^{\int_{x_0}^{x} a(t)\,dt} \\
&= C'(x)\, e^{\int_{x_0}^{x} a(t)\,dt}.
\end{aligned}
\end{equation*} f ( x ) = C ′ ( x ) e ∫ x 0 x a ( t ) d t + C ( x ) e ∫ x 0 x a ( t ) d t a ( x ) − a ( x ) C ( x ) e ∫ x 0 x a ( t ) d t = C ′ ( x ) e ∫ x 0 x a ( t ) d t .
Hence,
C ′ ( x ) = f ( x ) e − ∫ x 0 x a ( t ) d t . \begin{equation*}
C'(x)
= f(x)\, e^{-\int_{x_0}^{x} a(t)\,dt}.
\end{equation*} C ′ ( x ) = f ( x ) e − ∫ x 0 x a ( t ) d t .
Integrating,
C ( x ) = C 0 + ∫ x 0 x f ( u ) e − ∫ x 0 u a ( t ) d t d u . \begin{equation*}
C(x)
= C_0 + \int_{x_0}^{x}
f(u)\, e^{-\int_{x_0}^{u} a(t)\,dt}\,du.
\end{equation*} C ( x ) = C 0 + ∫ x 0 x f ( u ) e − ∫ x 0 u a ( t ) d t d u .
Finally, the general solution is
y ( x ) = C 0 e ∫ x 0 x a ( t ) d t + e ∫ x 0 x a ( t ) d t ∫ x 0 x f ( u ) e − ∫ x 0 u a ( t ) d t d u . \begin{equation*}
y(x)
= C_0\, e^{\int_{x_0}^{x} a(t)\,dt}
+ e^{\int_{x_0}^{x} a(t)\,dt}
\int_{x_0}^{x}
f(u)\, e^{-\int_{x_0}^{u} a(t)\,dt}\,du.
\end{equation*} y ( x ) = C 0 e ∫ x 0 x a ( t ) d t + e ∫ x 0 x a ( t ) d t ∫ x 0 x f ( u ) e − ∫ x 0 u a ( t ) d t d u .
Example
y ′ − y = e x x 2 − 2 e 2 x x + x sin x + e − x cos x . \begin{equation*}
y' - y
=
e^{x}x^{2}
- 2e^{2x}x
+ x\sin x
+ e^{-x}\cos x.
\end{equation*} y ′ − y = e x x 2 − 2 e 2 x x + x sin x + e − x cos x .
Reduction of Higher-Order Differential Equations to First-Order Systems
An n n n -th Order Differential Equation
F ( x , y , y ′ , y ( 2 ) , … , y ( n ) ) = 0. \begin{equation*}
F\!\left(x, y, y', y^{(2)}, \dots, y^{(n)}\right) = 0.
\end{equation*} F ( x , y , y ′ , y ( 2 ) , … , y ( n ) ) = 0.
If the equation can be solved for the highest derivative, it can be written as
y ( n ) = f ( x , y , y ′ , y ( 2 ) , … , y ( n − 1 ) ) . \begin{equation*}
y^{(n)} = f\!\left(x, y, y', y^{(2)}, \dots, y^{(n-1)}\right).
\end{equation*} y ( n ) = f ( x , y , y ′ , y ( 2 ) , … , y ( n − 1 ) ) .
Define
u k ( x ) = y ( k ) ( x ) , k = 0 , 1 , … , n − 1. \begin{equation*}
u_k(x) = y^{(k)}(x),
\qquad
k = 0,1,\dots,n-1.
\end{equation*} u k ( x ) = y ( k ) ( x ) , k = 0 , 1 , … , n − 1.
The n n n -th order equation is equivalent to the system
{ u 0 ′ = u 1 , u 1 ′ = u 2 , ⋮ F ( x , u 0 , u 1 , … , u n − 1 , u n − 1 ′ ) = 0. \begin{equation*}
\begin{cases}
u_0' = u_1, \\
u_1' = u_2, \\
\ \vdots \\
F\!\left(x, u_0, u_1, \dots, u_{n-1}, u'_{n - 1}\right) = 0.
\end{cases}
\end{equation*} ⎩ ⎨ ⎧ u 0 ′ = u 1 , u 1 ′ = u 2 , ⋮ F ( x , u 0 , u 1 , … , u n − 1 , u n − 1 ′ ) = 0.
If the highest derivative is explicitly given, we obtain
{ u 0 ′ = u 1 , u 1 ′ = u 2 , ⋮ u n − 1 ′ = f ( x , u 0 , u 1 , … , u n − 1 ) . \begin{equation*}
\begin{cases}
u_0' = u_1, \\
u_1' = u_2, \\
\ \vdots \\
u'_{n - 1}
=
f\!\left(x, u_0, u_1, \dots, u_{n-1}\right).
\end{cases}
\end{equation*} ⎩ ⎨ ⎧ u 0 ′ = u 1 , u 1 ′ = u 2 , ⋮ u n − 1 ′ = f ( x , u 0 , u 1 , … , u n − 1 ) .
Linear Systems of Differential Equations with Constant Coefficients
Consider the linear system
v ′ = A v , \begin{equation*}
\mathbf{v}' = A\,\mathbf{v},
\end{equation*} v ′ = A v ,
where A A A is a constant matrix.
Change of Variables
Let
v = P u , \begin{equation*}
\mathbf{v} = P\,\mathbf{u},
\end{equation*} v = P u ,
where P P P is an invertible matrix. Then
u ′ = P − 1 v ′ = P − 1 A v = P − 1 A P u . \begin{equation*}
\mathbf{u}'
= P^{-1}\mathbf{v}'
= P^{-1}A\mathbf{v}
= P^{-1}AP\,\mathbf{u}.
\end{equation*} u ′ = P − 1 v ′ = P − 1 A v = P − 1 A P u .
Hence, under the linear transformation v = P u \mathbf{v}=P\mathbf{u} v = P u , the system is transformed into
u ′ = ( P − 1 A P ) u . \begin{equation*}
\mathbf{u}' = \left(P^{-1}AP\right)\mathbf{u}.
\end{equation*} u ′ = ( P − 1 A P ) u .
Order Reduction of Higher-Order Differential Equations
Differential Equations Not Explicitly Involving y y y
Consider an n n n -th order differential equation of the form
F ( x , y ( k ) , y ( k + 1 ) , … , y ( n ) ) = 0. \begin{equation*}
F\!\left(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}\right) = 0.
\end{equation*} F ( x , y ( k ) , y ( k + 1 ) , … , y ( n ) ) = 0.
Introduce the new unknown function
u ( x ) = y ( k ) ( x ) . \begin{equation*}
u(x) = y^{(k)}(x).
\end{equation*} u ( x ) = y ( k ) ( x ) .
Then the original equation is transformed into the system
{ F ( x , u , u ′ , … , u ( n − k ) ) = 0 , y ( k ) = u ( x ) . \begin{equation*}
\begin{cases}
F\!\left(x, u, u', \dots, u^{(n-k)}\right) = 0, \\
y^{(k)} = u(x).
\end{cases}
\end{equation*} { F ( x , u , u ′ , … , u ( n − k ) ) = 0 , y ( k ) = u ( x ) .
The order of the differential equation is thus reduced by k k k .
Differential Equations Not Explicitly Involving x x x
Consider an n n n -th order differential equation of the form
F ( y , y ′ , … , y ( n ) ) = 0. \begin{equation*}
F\!\left(y, y', \dots, y^{(n)}\right) = 0.
\end{equation*} F ( y , y ′ , … , y ( n ) ) = 0.
Introduce the substitution
u ( y ) = y ′ ( x ) . \begin{equation*}
u(y) = y'(x).
\end{equation*} u ( y ) = y ′ ( x ) .
For any differentiable function w = w ( y ) = w ( y ( x ) ) w = w(y) = w(y(x)) w = w ( y ) = w ( y ( x )) , by the chain rule we have
d w d x = d w d y d y d x = u d w d y , \begin{equation*}
\frac{dw}{dx}
= \frac{dw}{dy}\frac{dy}{dx}
= u\,\frac{dw}{dy},
\end{equation*} d x d w = d y d w d x d y = u d y d w ,
that is,
d d x = u d d y . \begin{equation*}
\frac{d}{dx} = u\,\frac{d}{dy}.
\end{equation*} d x d = u d y d .
Using this relation, the original equation is transformed into
{ F ( y , u , u d u d y , … , ( u d d y ) n − 1 u ) = 0 , d y d x = u ( y ) . \begin{equation*}
\begin{cases}
F\!\left(
y,\,
u,\,
u\,\dfrac{du}{dy},\,
\dots,\,
\left(u\dfrac{d}{dy}\right)^{n-1}u
\right) = 0, \\
\dfrac{dy}{dx} = u(y).
\end{cases}
\end{equation*} ⎩ ⎨ ⎧ F ( y , u , u d y d u , … , ( u d y d ) n − 1 u ) = 0 , d x d y = u ( y ) .
Factorizable Linear Differential Equations
Consider the second-order linear differential equation
L y = y ′ ′ − 3 y ′ + 2 y = x 2 . \begin{equation*}
Ly = y'' - 3y' + 2y = x^2.
\end{equation*} L y = y ′′ − 3 y ′ + 2 y = x 2 .
Introduce the differential operator
D = d d x , \begin{equation*}
D = \frac{d}{dx},
\end{equation*} D = d x d ,
then
L = D 2 − 3 D + 2. \begin{equation*}
L = D^2 - 3D + 2.
\end{equation*} L = D 2 − 3 D + 2.
Factor the characteristic polynomial:
λ 2 − 3 λ + 2 = ( λ − 2 ) ( λ − 1 ) . \begin{equation*}
\lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1).
\end{equation*} λ 2 − 3 λ + 2 = ( λ − 2 ) ( λ − 1 ) .
Accordingly, the differential operator can be factorized as
L = ( d d x − 2 ) ( d d x − 1 ) . \begin{equation*}
L
= \left(\frac{d}{dx} - 2\right)
\left(\frac{d}{dx} - 1\right).
\end{equation*} L = ( d x d − 2 ) ( d x d − 1 ) .
Thus the equation becomes
( d d x − 2 ) ( d d x − 1 ) y = x 2 . \begin{equation*}
\left(\frac{d}{dx} - 2\right)
\left(\frac{d}{dx} - 1\right)y
= x^2.
\end{equation*} ( d x d − 2 ) ( d x d − 1 ) y = x 2 .
Define
u = ( d d x − 1 ) y = y ′ − y . \begin{equation*}
u = \left(\frac{d}{dx} - 1\right)y
= y' - y.
\end{equation*} u = ( d x d − 1 ) y = y ′ − y .
Then the original equation is equivalent to the system
{ u ′ − 2 u = x 2 , y ′ − y = u . \begin{equation*}
\begin{cases}
u' - 2u = x^2, \\
y' - y = u.
\end{cases}
\end{equation*} { u ′ − 2 u = x 2 , y ′ − y = u .
Factorizable Differential Equations (Euler Type)
Consider the Euler-type differential equation
L y = x 2 y ′ ′ − 2 x y ′ + 2 y = f ( x ) . \begin{equation*}
Ly = x^2 y'' - 2x y' + 2y = f(x).
\end{equation*} L y = x 2 y ′′ − 2 x y ′ + 2 y = f ( x ) .
Introduce the Euler differential operator
D x = x d d x . \begin{equation*}
D_x = x\frac{d}{dx}.
\end{equation*} D x = x d x d .
Then the operator L L L can be written as
L = ( D x − α ) ( D x − β ) . \begin{equation*}
L = (D_x - \alpha)(D_x - \beta).
\end{equation*} L = ( D x − α ) ( D x − β ) .
Thus,
L y = ( x d d x − α ) ( x d d x − β ) y = f ( x ) . \begin{equation*}
Ly
= \left(x\frac{d}{dx} - \alpha\right)
\left(x\frac{d}{dx} - \beta\right)y
= f(x).
\end{equation*} L y = ( x d x d − α ) ( x d x d − β ) y = f ( x ) .
Expanding the operator and comparing coefficients yields
{ x − α x − β x = − 2 x , α β = 2. \begin{equation*}
\begin{cases}
x - \alpha x - \beta x = -2x, \\
\alpha\beta = 2.
\end{cases}
\end{equation*} { x − αx − β x = − 2 x , α β = 2.
Solving this system gives
α = 2 , β = 1. \begin{equation*}
\alpha = 2, \qquad \beta = 1.
\end{equation*} α = 2 , β = 1.
Define
u = ( x d d x − β ) y = x y ′ − y . \begin{equation*}
u = \left(x\frac{d}{dx} - \beta\right)y
= x y' - y.
\end{equation*} u = ( x d x d − β ) y = x y ′ − y .
Then the original equation is equivalent to the system
{ x u ′ − 2 u = f ( x ) , x y ′ − y = u . \begin{equation*}
\begin{cases}
x u' - 2u = f(x), \\
x y' - y = u.
\end{cases}
\end{equation*} { x u ′ − 2 u = f ( x ) , x y ′ − y = u .
High-Order Linear Differential Equation and First-Order Linear System
Consider the (n)-th order linear differential equation
y ( n ) + a n − 1 ( x ) y ( n − 1 ) + ⋯ + a 1 ( x ) y ′ + a 0 ( x ) y = f ( x ) . \begin{equation*}
y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = f(x).
\end{equation*} y ( n ) + a n − 1 ( x ) y ( n − 1 ) + ⋯ + a 1 ( x ) y ′ + a 0 ( x ) y = f ( x ) .
Introduce the state variables
u 0 = y , u 1 = y ′ , ⋮ u n − 2 = y ( n − 2 ) , u n − 1 = y ( n − 1 ) . \begin{equation*}
\begin{aligned}
u_0 &= y, \\
u_1 &= y', \\
&\;\;\vdots \\
u_{n-2} &= y^{(n-2)}, \\
u_{n-1} &= y^{(n-1)}.
\end{aligned}
\end{equation*} u 0 u 1 u n − 2 u n − 1 = y , = y ′ , ⋮ = y ( n − 2 ) , = y ( n − 1 ) .
Then the equation can be rewritten as the first-order linear system
( u 0 u 1 ⋮ u n − 2 u n − 1 ) ′ = ( 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 − a 0 ( x ) − a 1 ( x ) − a 2 ( x ) ⋯ − a n − 1 ( x ) ) ( u 0 u 1 ⋮ u n − 2 u n − 1 ) + ( 0 0 ⋮ 0 f ( x ) ) . \begin{equation*}
\begin{pmatrix}
u_0 \\
u_1 \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{pmatrix}'
=
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_0(x) & -a_1(x) & -a_2(x) & \cdots & -a_{n-1}(x)
\end{pmatrix}
\begin{pmatrix}
u_0 \\
u_1 \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{pmatrix}
+
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0 \\
f(x)
\end{pmatrix}.
\end{equation*} u 0 u 1 ⋮ u n − 2 u n − 1 ′ = 0 0 ⋮ 0 − a 0 ( x ) 1 0 ⋮ 0 − a 1 ( x ) 0 1 ⋮ 0 − a 2 ( x ) ⋯ ⋯ ⋱ ⋯ ⋯ 0 0 ⋮ 1 − a n − 1 ( x ) u 0 u 1 ⋮ u n − 2 u n − 1 + 0 0 ⋮ 0 f ( x ) .
That is, the high-order linear differential equation is equivalent to a first-order linear differential system.
Superposition Principle for Linear Differential Systems
Homogeneous vs. Nonhomogeneous Systems
Let A ( x ) A(x) A ( x ) be a matrix-valued function.
Homogeneous linear system
y ′ = A ( x ) y \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y}
\end{equation*} y ′ = A ( x ) y
Nonhomogeneous linear system
y ′ = A ( x ) y + f ( x ) \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x)
\end{equation*} y ′ = A ( x ) y + f ( x )
Here y ( x ) \mathbf{y}(x) y ( x ) is a vector-valued function and f ( x ) \mathbf{f}(x) f ( x ) is the nonhomogeneous (forcing) term.
Method of Variation of Constants (for Linear Systems)
Homogeneous Linear System
Consider the homogeneous linear system
y ′ = A ( x ) y , \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y},
\end{equation*} y ′ = A ( x ) y ,
where A ( x ) A(x) A ( x ) is an n × n n \times n n × n matrix-valued function.
Let y 1 ( x ) , … , y n ( x ) \mathbf{y}_1(x), \ldots, \mathbf{y}_n(x) y 1 ( x ) , … , y n ( x ) be n n n linearly independent solutions of this system. Define the fundamental matrix
U ( x ) = ( y 1 ( x ) , … , y n ( x ) ) . \begin{equation*}
U(x) = \bigl(\mathbf{y}_1(x), \ldots, \mathbf{y}_n(x)\bigr).
\end{equation*} U ( x ) = ( y 1 ( x ) , … , y n ( x ) ) .
Then U ( x ) U(x) U ( x ) is invertible and satisfies
U ′ ( x ) = A ( x ) U ( x ) . \begin{equation*}
U'(x) = A(x)U(x).
\end{equation*} U ′ ( x ) = A ( x ) U ( x ) .
Nonhomogeneous Linear System
Now consider the nonhomogeneous system
y ′ = A ( x ) y + f ( x ) . \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x).
\end{equation*} y ′ = A ( x ) y + f ( x ) .
Assume a solution of the form
y ( x ) = U ( x ) C ( x ) , \begin{equation*}
\mathbf{y}(x) = U(x)\mathbf{C}(x),
\end{equation*} y ( x ) = U ( x ) C ( x ) ,
where C ( x ) \mathbf{C}(x) C ( x ) is an unknown vector-valued function.
Differentiate y ( x ) \mathbf{y}(x) y ( x ) :
y ′ ( x ) = U ′ ( x ) C ( x ) + U ( x ) C ′ ( x ) = A ( x ) U ( x ) C ( x ) + U ( x ) C ′ ( x ) = A ( x ) y ( x ) + U ( x ) C ′ ( x ) . \begin{equation*}
\begin{aligned}
\mathbf{y}'(x)
&= U'(x)\mathbf{C}(x) + U(x)\mathbf{C}'(x) \\
&= A(x)U(x)\mathbf{C}(x) + U(x)\mathbf{C}'(x) \\
&= A(x)\mathbf{y}(x) + U(x)\mathbf{C}'(x).
\end{aligned}
\end{equation*} y ′ ( x ) = U ′ ( x ) C ( x ) + U ( x ) C ′ ( x ) = A ( x ) U ( x ) C ( x ) + U ( x ) C ′ ( x ) = A ( x ) y ( x ) + U ( x ) C ′ ( x ) .
Comparing with
y ′ = A ( x ) y + f ( x ) , \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x),
\end{equation*} y ′ = A ( x ) y + f ( x ) ,
we obtain
U ( x ) C ′ ( x ) = f ( x ) . \begin{equation*}
U(x)\mathbf{C}'(x) = \mathbf{f}(x).
\end{equation*} U ( x ) C ′ ( x ) = f ( x ) .
Since U ( x ) U(x) U ( x ) is invertible,
C ′ ( x ) = U ( x ) − 1 f ( x ) . \begin{equation*}
\mathbf{C}'(x) = U(x)^{-1}\mathbf{f}(x).
\end{equation*} C ′ ( x ) = U ( x ) − 1 f ( x ) .
Integrating,
C ( x ) = C 0 + ∫ x 0 x U ( t ) − 1 f ( t ) d t . \begin{equation*}
\mathbf{C}(x) = \mathbf{C}_0 + \int_{x_0}^x U(t)^{-1}\mathbf{f}(t)\,dt.
\end{equation*} C ( x ) = C 0 + ∫ x 0 x U ( t ) − 1 f ( t ) d t .
Thus the general solution of the nonhomogeneous system is
y ( x ) = U ( x ) C 0 + U ( x ) ∫ x 0 x U ( t ) − 1 f ( t ) d t . \begin{equation*}
\mathbf{y}(x) = U(x)\mathbf{C}_0
+ U(x)\int_{x_0}^x U(t)^{-1}\mathbf{f}(t)\,dt.
\end{equation*} y ( x ) = U ( x ) C 0 + U ( x ) ∫ x 0 x U ( t ) − 1 f ( t ) d t .
Interpretation
U ( x ) C 0 U(x)\mathbf{C}_0 U ( x ) C 0 is the general solution of the homogeneous system.
The integral term provides one particular solution of the nonhomogeneous system.
This method generalizes the variation of constants technique from scalar equations to linear systems.
Let y 1 , y 2 \mathbf{y}_1,\mathbf{y}_2 y 1 , y 2 be two solutions of the linear differential equation
y ′ = A ( x ) y + f ( x ) , \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x),
\end{equation*} y ′ = A ( x ) y + f ( x ) ,
satisfying
y 1 ( x 0 ) = y 2 ( x 0 ) . \begin{equation*}
\mathbf{y}_1(x_0) = \mathbf{y}_2(x_0).
\end{equation*} y 1 ( x 0 ) = y 2 ( x 0 ) .
Then
y 1 ( x ) = y 2 ( x ) , ∀ x . \begin{equation*}
\mathbf{y}_1(x) = \mathbf{y}_2(x), \qquad \forall x.
\end{equation*} y 1 ( x ) = y 2 ( x ) , ∀ x .
Liouville’s Theorem. Let y 1 , … , y n \mathbf{y}_1,\dots,\mathbf{y}_n y 1 , … , y n be n n n solutions of the homogeneous linear system
y ′ = A ( x ) y . \begin{equation*}
\mathbf{y}' = A(x)\mathbf{y}.
\end{equation*} y ′ = A ( x ) y .
Define the matrix
U ( x ) = ( y 1 ( x ) , … , y n ( x ) ) . \begin{equation*}
U(x) = \bigl(\mathbf{y}_1(x),\dots,\mathbf{y}_n(x)\bigr).
\end{equation*} U ( x ) = ( y 1 ( x ) , … , y n ( x ) ) .
Then U ( x ) U(x) U ( x ) satisfies
( det U ( x ) ) ′ = tr A ( x ) det U ( x ) . \begin{equation*}
\bigl(\det U(x)\bigr)' = \operatorname{tr} A(x)\,\det U(x).
\end{equation*} ( det U ( x ) ) ′ = tr A ( x ) det U ( x ) .
Corollary.
For any x x x , the functions y 1 ( x ) , … , y n ( x ) \mathbf{y}_1(x),\dots,\mathbf{y}_n(x) y 1 ( x ) , … , y n ( x ) are linearly independent if and only if there exists a point x 0 x_0 x 0 such that y 1 ( x 0 ) , … , y n ( x 0 ) \mathbf{y}_1(x_0),\dots,\mathbf{y}_n(x_0) y 1 ( x 0 ) , … , y n ( x 0 ) are linearly independent.