跳到主要内容

6 Ordinary Differential Equations

Basic Concepts of Differential Equations

  • Differential Equation (System): An equation (or system of equations) containing unknown functions and their derivatives.
  • Order of a Differential Equation (System): The order of the highest-order derivative of the unknown functions involved in the equation.
  • Ordinary Differential Equation (ODE): A differential equation (or system) where all unknown functions are functions of a single independent variable.

General Form of an nn-th Order ODE (Implicit Form)

F(x,y,y,,y(n))=0\begin{equation*} F(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n)}) = 0 \end{equation*}

Where y(x)=(y1(x),,ym(x))\mathbf{y}(x) = (y_1(x), \dots, y_m(x)) is a (set of) unknown function(s).

Explicit Form of a Differential Equation

y(n)=f(x,y,y,,y(n1))\begin{equation*} \mathbf{y}^{(n)} = f(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n-1)}) \end{equation*}

Solution of a Differential Equation

A solution of the differential equation F(x,y,y,,y(n))=0F(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n)}) = 0 is a function y=y(x)\mathbf{y} = \mathbf{y}(x) that satisfies the equation for all xx in its domain:

F(x,y(x),y(x),,y(n)(x))=0,x\begin{equation*} F(x, \mathbf{y}(x), \mathbf{y}'(x), \dots, \mathbf{y}^{(n)}(x)) = 0, \quad \forall x \end{equation*}

Initial Value Problem (Cauchy Problem)

An Initial Value Problem (also known as a Cauchy Problem) consists of a differential equation along with a set of initial conditions at a specific point x0x_0:

{F(x,y,y,,y(n))=0,y(x0)=C0,y(x0)=C1,y(n1)(x0)=Cn1\begin{equation*} \begin{cases} F(x, \mathbf{y}, \mathbf{y}', \dots, \mathbf{y}^{(n)}) = 0, \\ \mathbf{y}(x_0) = \mathbf{C}_0, \\ \mathbf{y}'(x_0) = \mathbf{C}_1, \\ \vdots \\ \mathbf{y}^{(n-1)}(x_0) = \mathbf{C}_{n-1} \end{cases} \end{equation*}

Where C0,C1,,Cn1\mathbf{C}_0, \mathbf{C}_1, \dots, \mathbf{C}_{n-1} are given constant vectors. The goal is to find a specific solution y=y(x)\mathbf{y} = \mathbf{y}(x) that satisfies both the equation and these conditions.

For an nn-th order differential equation F(x,y,y,,y(n))=0F(x, y, y', \dots, y^{(n)}) = 0, the General Solution y(x)y(x) is a family of functions that contains nn arbitrary constants:

Direction Fields and Integral Curves: Geometric Meaning of First-Order Differential Equations

dydx=f(x,y),y=y(x) is a solution y(x)=f(x,y(x)).\begin{equation*} \frac{dy}{dx} = f(x,y), \quad y = y(x) \text{ is a solution } \Longleftrightarrow y'(x) = f(x, y(x)). \end{equation*}

Slope field: At each point (x,y)(x,y), a slope value f(x,y)f(x,y) is prescribed.

Direction field: At each point (x,y)(x,y), a line with direction

(1,f(x,y))\begin{equation*} (1,\, f(x,y)) \end{equation*}

is assigned.

Integral curve: A curve γ\gamma is called an integral curve if, at every point (x,y)(x,y) it passes through, the slope of its tangent line equals

f(x,y).\begin{equation*} f(x,y). \end{equation*}

General Definition of Direction Fields and Integral Curves

Direction field (line field): At each point PP in space, a straight line l(P)l(P) is assigned.

Integral curve of a direction field: A curve γ\gamma is called an integral curve if it is everywhere tangent to the direction field.

Planar Direction Field

P(x,y)dx+Q(x,y)dy=0.\begin{equation*} P(x,y)\,dx + Q(x,y)\,dy = 0. \end{equation*}

Integral Curve

Let an integral curve be parametrized as

(x(t),y(t)).\begin{equation*} (x(t),\, y(t)). \end{equation*}

Then it satisfies

P(x(t),y(t))x(t)  +  Q(x(t),y(t))y(t)=0,t.\begin{equation*} P\bigl(x(t),y(t)\bigr)\,x'(t) \;+\; Q\bigl(x(t),y(t)\bigr)\,y'(t) = 0, \quad \forall\, t. \end{equation*}

Separable Differential Equations

p(x)dx+q(y)dy=0.\begin{equation*} p(x)\,dx + q(y)\,dy = 0. \end{equation*}

Assume that pp and qq are continuous and admit antiderivatives PP and QQ, respectively.

Let an integral curve be parametrized by

(x(t),y(t)).\begin{equation*} (x(t),\, y(t)). \end{equation*}

Then along the curve,

0=p(x(t))dx(t)+q(y(t))dy(t)\begin{equation*} 0 = p\bigl(x(t)\bigr)\,dx(t) + q\bigl(y(t)\bigr)\,dy(t) \end{equation*} =dP(x(t))+dQ(y(t))\begin{equation*} = dP\bigl(x(t)\bigr) + dQ\bigl(y(t)\bigr) \end{equation*} =(P(x(t))+Q(y(t)))dt.\begin{equation*} = \bigl(P(x(t)) + Q(y(t))\bigr)' \, dt. \end{equation*}

Therefore,

P(x(t))+Q(y(t))=C.\begin{equation*} P(x(t)) + Q(y(t)) = C. \end{equation*}

Equivalently, the general solution can be written as

P(x)+Q(y)=C.\begin{equation*} P(x) + Q(y) = C. \end{equation*}

Homogeneous Differential Equations

y=f ⁣(yx).\begin{equation*} y' = f\!\left(\frac{y}{x}\right). \end{equation*}

Introduce the substitution

p=yx,z=lnx.\begin{equation*} p = \frac{y}{x}, \qquad z = \ln |x|. \end{equation*}

Then we obtain

zp=xpx=1xpx=1yxyx=1f(p)p.\begin{equation*} z'_p = \frac{x'_p}{x} = \frac{1}{x p'_x} = \frac{1}{y'_x - \dfrac{y}{x}} = \frac{1}{f(p) - p}. \end{equation*}

(This is the simplest differential equation.)

Integrating, we get

z=dpf(p)p=F(p)+C.\begin{equation*} z = \int \frac{dp}{f(p) - p} = F(p) + C. \end{equation*}

Since z=lnxz = \ln |x|, it follows that

x=C1eF(p)=C1eF(y/x).\begin{equation*} x = C_1 e^{F(p)} = C_1 e^{F(y/x)}. \end{equation*}

Equivalently,

xeF(y/x)=C1.\begin{equation*} x\,e^{-F(y/x)} = C_1. \end{equation*}

Differential Equations of the Form

y=f ⁣(a1x+b1y+c1a2x+b2y+c2).\begin{equation*} y' = f\!\left( \frac{a_1 x + b_1 y + c_1} {a_2 x + b_2 y + c_2} \right). \end{equation*}

Case 1

Assume that the linear system

{a1x+b1y+c1=0,a2x+b2y+c2=0\begin{equation*} \begin{cases} a_1 x + b_1 y + c_1 = 0, \\ a_2 x + b_2 y + c_2 = 0 \end{cases} \end{equation*}

has a solution (x0,y0)(x_0, y_0).

This point serves as a center of symmetry of the direction field.

Translation of Variables

Introduce the change of variables

ξ=xx0,η=yy0.\begin{equation*} \xi = x - x_0, \qquad \eta = y - y_0. \end{equation*}

Then the differential equation becomes

ηξ=f ⁣(a1ξ+b1ηa2ξ+b2η)=f ⁣(a1+b1ηξa2+b2ηξ).\begin{equation*} \eta'_\xi = f\!\left( \frac{a_1 \xi + b_1 \eta} {a_2 \xi + b_2 \eta} \right) = f\!\left( \frac{a_1 + b_1 \dfrac{\eta}{\xi}} {a_2 + b_2 \dfrac{\eta}{\xi}} \right). \end{equation*}

This is a homogeneous differential equation.

Case 2

Assume that the linear system

{a1x+b1y+c1=0,a2x+b2y+c2=0\begin{equation*} \begin{cases} a_1 x + b_1 y + c_1 = 0, \\ a_2 x + b_2 y + c_2 = 0 \end{cases} \end{equation*}

has no solution.

The differential equation can be rewritten as

y=f ⁣(α+βa2x+b2y+c2),\begin{equation*} y' = f\!\left( \alpha + \frac{\beta}{a_2 x + b_2 y + c_2} \right), \end{equation*}

where α\alpha and β\beta are constants.

Change of Variables

Introduce the new variable

ξ=a2x+b2y+c2.\begin{equation*} \xi = a_2 x + b_2 y + c_2. \end{equation*}

Then

ξx=a2+b2yx=a2+b2f ⁣(α+βξ).\begin{equation*} \xi'_x = a_2 + b_2 y'_x = a_2 + b_2 f\!\left(\alpha + \frac{\beta}{\xi}\right). \end{equation*}

This is a separable differential equation.

Linear Differential Equations

y=a(x)y+f(x).\begin{equation*} y' = a(x)\,y + f(x). \end{equation*}

Here f(x)f(x) is the nonhomogeneous term.

  • If f(x)=0f(x) = 0, the equation is called a homogeneous linear equation.
  • If f(x)0f(x) \neq 0, the equation is called a nonhomogeneous linear equation.

Homogeneous Linear Equation

The homogeneous equation

y=a(x)y\begin{equation*} y' = a(x)\,y \end{equation*}

is a separable differential equation.

Separating variables, we obtain

dyy=a(x)dx\begin{equation*} \frac{dy}{y} = a(x)\,dx \end{equation*}

which implies

lny=x0xa(t)dt+C1.\begin{equation*} \ln |y| = \int_{x_0}^{x} a(t)\,dt + C_1. \end{equation*}

Equivalently,

y=eC1ex0xa(t)dt.\begin{equation*} |y| = e^{C_1}\, e^{\int_{x_0}^{x} a(t)\,dt}. \end{equation*}

Hence the general solution is

y(x)=Cex0xa(t)dt,\begin{equation*} y(x) = C\, e^{\int_{x_0}^{x} a(t)\,dt}, \end{equation*}

where CC is an arbitrary constant. This family of solutions includes the particular solution y=0y = 0.

Nonhomogeneous Linear Differential Equations

y=a(x)y+f(x).\begin{equation*} y' = a(x)\,y + f(x). \end{equation*}

Assume a solution of the form

y(x)=C(x)ex0xa(t)dt.\begin{equation*} y(x) = C(x)\, e^{\int_{x_0}^{x} a(t)\,dt}. \end{equation*}

Then

f(x)=y(x)a(x)y(x).\begin{equation*} f(x) = y'(x) - a(x)\,y(x). \end{equation*}

Substituting y(x)y(x) into the equation, we obtain

f(x)=C(x)ex0xa(t)dt+C(x)ex0xa(t)dta(x)a(x)C(x)ex0xa(t)dt=C(x)ex0xa(t)dt.\begin{equation*} \begin{aligned} f(x) &= C'(x)\, e^{\int_{x_0}^{x} a(t)\,dt} + C(x)\, e^{\int_{x_0}^{x} a(t)\,dt} a(x) - a(x)\, C(x)\, e^{\int_{x_0}^{x} a(t)\,dt} \\ &= C'(x)\, e^{\int_{x_0}^{x} a(t)\,dt}. \end{aligned} \end{equation*}

Hence,

C(x)=f(x)ex0xa(t)dt.\begin{equation*} C'(x) = f(x)\, e^{-\int_{x_0}^{x} a(t)\,dt}. \end{equation*}

Integrating,

C(x)=C0+x0xf(u)ex0ua(t)dtdu.\begin{equation*} C(x) = C_0 + \int_{x_0}^{x} f(u)\, e^{-\int_{x_0}^{u} a(t)\,dt}\,du. \end{equation*}

Finally, the general solution is

y(x)=C0ex0xa(t)dt+ex0xa(t)dtx0xf(u)ex0ua(t)dtdu.\begin{equation*} y(x) = C_0\, e^{\int_{x_0}^{x} a(t)\,dt} + e^{\int_{x_0}^{x} a(t)\,dt} \int_{x_0}^{x} f(u)\, e^{-\int_{x_0}^{u} a(t)\,dt}\,du. \end{equation*}

Example

  1. yy=exx22e2xx+xsinx+excosx. \begin{equation*} y' - y = e^{x}x^{2} - 2e^{2x}x + x\sin x + e^{-x}\cos x. \end{equation*}

Reduction of Higher-Order Differential Equations to First-Order Systems

An nn-th Order Differential Equation

F ⁣(x,y,y,y(2),,y(n))=0.\begin{equation*} F\!\left(x, y, y', y^{(2)}, \dots, y^{(n)}\right) = 0. \end{equation*}

If the equation can be solved for the highest derivative, it can be written as

y(n)=f ⁣(x,y,y,y(2),,y(n1)).\begin{equation*} y^{(n)} = f\!\left(x, y, y', y^{(2)}, \dots, y^{(n-1)}\right). \end{equation*}

Define

uk(x)=y(k)(x),k=0,1,,n1.\begin{equation*} u_k(x) = y^{(k)}(x), \qquad k = 0,1,\dots,n-1. \end{equation*}

The nn-th order equation is equivalent to the system

{u0=u1,u1=u2, F ⁣(x,u0,u1,,un1,un1)=0.\begin{equation*} \begin{cases} u_0' = u_1, \\ u_1' = u_2, \\ \ \vdots \\ F\!\left(x, u_0, u_1, \dots, u_{n-1}, u'_{n - 1}\right) = 0. \end{cases} \end{equation*}

If the highest derivative is explicitly given, we obtain

{u0=u1,u1=u2, un1=f ⁣(x,u0,u1,,un1).\begin{equation*} \begin{cases} u_0' = u_1, \\ u_1' = u_2, \\ \ \vdots \\ u'_{n - 1} = f\!\left(x, u_0, u_1, \dots, u_{n-1}\right). \end{cases} \end{equation*}

Linear Systems of Differential Equations with Constant Coefficients

Consider the linear system

v=Av,\begin{equation*} \mathbf{v}' = A\,\mathbf{v}, \end{equation*}

where AA is a constant matrix.

Change of Variables

Let

v=Pu,\begin{equation*} \mathbf{v} = P\,\mathbf{u}, \end{equation*}

where PP is an invertible matrix. Then

u=P1v=P1Av=P1APu.\begin{equation*} \mathbf{u}' = P^{-1}\mathbf{v}' = P^{-1}A\mathbf{v} = P^{-1}AP\,\mathbf{u}. \end{equation*}

Hence, under the linear transformation v=Pu\mathbf{v}=P\mathbf{u}, the system is transformed into

u=(P1AP)u.\begin{equation*} \mathbf{u}' = \left(P^{-1}AP\right)\mathbf{u}. \end{equation*}

Order Reduction of Higher-Order Differential Equations

Differential Equations Not Explicitly Involving yy

Consider an nn-th order differential equation of the form

F ⁣(x,y(k),y(k+1),,y(n))=0.\begin{equation*} F\!\left(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}\right) = 0. \end{equation*}

Introduce the new unknown function

u(x)=y(k)(x).\begin{equation*} u(x) = y^{(k)}(x). \end{equation*}

Then the original equation is transformed into the system

{F ⁣(x,u,u,,u(nk))=0,y(k)=u(x).\begin{equation*} \begin{cases} F\!\left(x, u, u', \dots, u^{(n-k)}\right) = 0, \\ y^{(k)} = u(x). \end{cases} \end{equation*}

The order of the differential equation is thus reduced by kk.

Differential Equations Not Explicitly Involving xx

Consider an nn-th order differential equation of the form

F ⁣(y,y,,y(n))=0.\begin{equation*} F\!\left(y, y', \dots, y^{(n)}\right) = 0. \end{equation*}

Introduce the substitution

u(y)=y(x).\begin{equation*} u(y) = y'(x). \end{equation*}

For any differentiable function w=w(y)=w(y(x))w = w(y) = w(y(x)), by the chain rule we have

dwdx=dwdydydx=udwdy,\begin{equation*} \frac{dw}{dx} = \frac{dw}{dy}\frac{dy}{dx} = u\,\frac{dw}{dy}, \end{equation*}

that is,

ddx=uddy.\begin{equation*} \frac{d}{dx} = u\,\frac{d}{dy}. \end{equation*}

Using this relation, the original equation is transformed into

{F ⁣(y,u,ududy,,(uddy)n1u)=0,dydx=u(y).\begin{equation*} \begin{cases} F\!\left( y,\, u,\, u\,\dfrac{du}{dy},\, \dots,\, \left(u\dfrac{d}{dy}\right)^{n-1}u \right) = 0, \\ \dfrac{dy}{dx} = u(y). \end{cases} \end{equation*}

Factorizable Linear Differential Equations

Consider the second-order linear differential equation

Ly=y3y+2y=x2.\begin{equation*} Ly = y'' - 3y' + 2y = x^2. \end{equation*}

Introduce the differential operator

D=ddx,\begin{equation*} D = \frac{d}{dx}, \end{equation*}

then

L=D23D+2.\begin{equation*} L = D^2 - 3D + 2. \end{equation*}

Factor the characteristic polynomial:

λ23λ+2=(λ2)(λ1).\begin{equation*} \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1). \end{equation*}

Accordingly, the differential operator can be factorized as

L=(ddx2)(ddx1).\begin{equation*} L = \left(\frac{d}{dx} - 2\right) \left(\frac{d}{dx} - 1\right). \end{equation*}

Thus the equation becomes

(ddx2)(ddx1)y=x2.\begin{equation*} \left(\frac{d}{dx} - 2\right) \left(\frac{d}{dx} - 1\right)y = x^2. \end{equation*}

Define

u=(ddx1)y=yy.\begin{equation*} u = \left(\frac{d}{dx} - 1\right)y = y' - y. \end{equation*}

Then the original equation is equivalent to the system

{u2u=x2,yy=u.\begin{equation*} \begin{cases} u' - 2u = x^2, \\ y' - y = u. \end{cases} \end{equation*}

Factorizable Differential Equations (Euler Type)

Consider the Euler-type differential equation

Ly=x2y2xy+2y=f(x).\begin{equation*} Ly = x^2 y'' - 2x y' + 2y = f(x). \end{equation*}

Introduce the Euler differential operator

Dx=xddx.\begin{equation*} D_x = x\frac{d}{dx}. \end{equation*}

Then the operator LL can be written as

L=(Dxα)(Dxβ).\begin{equation*} L = (D_x - \alpha)(D_x - \beta). \end{equation*}

Thus,

Ly=(xddxα)(xddxβ)y=f(x).\begin{equation*} Ly = \left(x\frac{d}{dx} - \alpha\right) \left(x\frac{d}{dx} - \beta\right)y = f(x). \end{equation*}

Expanding the operator and comparing coefficients yields

{xαxβx=2x,αβ=2.\begin{equation*} \begin{cases} x - \alpha x - \beta x = -2x, \\ \alpha\beta = 2. \end{cases} \end{equation*}

Solving this system gives

α=2,β=1.\begin{equation*} \alpha = 2, \qquad \beta = 1. \end{equation*}

Define

u=(xddxβ)y=xyy.\begin{equation*} u = \left(x\frac{d}{dx} - \beta\right)y = x y' - y. \end{equation*}

Then the original equation is equivalent to the system

{xu2u=f(x),xyy=u.\begin{equation*} \begin{cases} x u' - 2u = f(x), \\ x y' - y = u. \end{cases} \end{equation*}

High-Order Linear Differential Equation and First-Order Linear System

Consider the (n)-th order linear differential equation

y(n)+an1(x)y(n1)++a1(x)y+a0(x)y=f(x).\begin{equation*} y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = f(x). \end{equation*}

Introduce the state variables

u0=y,u1=y,    un2=y(n2),un1=y(n1).\begin{equation*} \begin{aligned} u_0 &= y, \\ u_1 &= y', \\ &\;\;\vdots \\ u_{n-2} &= y^{(n-2)}, \\ u_{n-1} &= y^{(n-1)}. \end{aligned} \end{equation*}

Then the equation can be rewritten as the first-order linear system

(u0u1un2un1)=(010000100001a0(x)a1(x)a2(x)an1(x))(u0u1un2un1)+(000f(x)).\begin{equation*} \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0(x) & -a_1(x) & -a_2(x) & \cdots & -a_{n-1}(x) \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(x) \end{pmatrix}. \end{equation*}

That is, the high-order linear differential equation is equivalent to a first-order linear differential system.

Superposition Principle for Linear Differential Systems

Homogeneous vs. Nonhomogeneous Systems

Let A(x)A(x) be a matrix-valued function.

  • Homogeneous linear system
y=A(x)y\begin{equation*} \mathbf{y}' = A(x)\mathbf{y} \end{equation*}
  • Nonhomogeneous linear system
y=A(x)y+f(x)\begin{equation*} \mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x) \end{equation*}

Here y(x)\mathbf{y}(x) is a vector-valued function and f(x)\mathbf{f}(x) is the nonhomogeneous (forcing) term.

Method of Variation of Constants (for Linear Systems)

Homogeneous Linear System

Consider the homogeneous linear system

y=A(x)y,\begin{equation*} \mathbf{y}' = A(x)\mathbf{y}, \end{equation*}

where A(x)A(x) is an n×nn \times n matrix-valued function.

Let y1(x),,yn(x)\mathbf{y}_1(x), \ldots, \mathbf{y}_n(x) be nn linearly independent solutions of this system. Define the fundamental matrix

U(x)=(y1(x),,yn(x)).\begin{equation*} U(x) = \bigl(\mathbf{y}_1(x), \ldots, \mathbf{y}_n(x)\bigr). \end{equation*}

Then U(x)U(x) is invertible and satisfies

U(x)=A(x)U(x).\begin{equation*} U'(x) = A(x)U(x). \end{equation*}

Nonhomogeneous Linear System

Now consider the nonhomogeneous system

y=A(x)y+f(x).\begin{equation*} \mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x). \end{equation*}

Assume a solution of the form

y(x)=U(x)C(x),\begin{equation*} \mathbf{y}(x) = U(x)\mathbf{C}(x), \end{equation*}

where C(x)\mathbf{C}(x) is an unknown vector-valued function.

Differentiate y(x)\mathbf{y}(x):

y(x)=U(x)C(x)+U(x)C(x)=A(x)U(x)C(x)+U(x)C(x)=A(x)y(x)+U(x)C(x).\begin{equation*} \begin{aligned} \mathbf{y}'(x) &= U'(x)\mathbf{C}(x) + U(x)\mathbf{C}'(x) \\ &= A(x)U(x)\mathbf{C}(x) + U(x)\mathbf{C}'(x) \\ &= A(x)\mathbf{y}(x) + U(x)\mathbf{C}'(x). \end{aligned} \end{equation*}

Comparing with

y=A(x)y+f(x),\begin{equation*} \mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x), \end{equation*}

we obtain

U(x)C(x)=f(x).\begin{equation*} U(x)\mathbf{C}'(x) = \mathbf{f}(x). \end{equation*}

Since U(x)U(x) is invertible,

C(x)=U(x)1f(x).\begin{equation*} \mathbf{C}'(x) = U(x)^{-1}\mathbf{f}(x). \end{equation*}

Integrating,

C(x)=C0+x0xU(t)1f(t)dt.\begin{equation*} \mathbf{C}(x) = \mathbf{C}_0 + \int_{x_0}^x U(t)^{-1}\mathbf{f}(t)\,dt. \end{equation*}

Thus the general solution of the nonhomogeneous system is

y(x)=U(x)C0+U(x)x0xU(t)1f(t)dt.\begin{equation*} \mathbf{y}(x) = U(x)\mathbf{C}_0 + U(x)\int_{x_0}^x U(t)^{-1}\mathbf{f}(t)\,dt. \end{equation*}

Interpretation

  • U(x)C0U(x)\mathbf{C}_0 is the general solution of the homogeneous system.
  • The integral term provides one particular solution of the nonhomogeneous system.
  • This method generalizes the variation of constants technique from scalar equations to linear systems.

Let y1,y2\mathbf{y}_1,\mathbf{y}_2 be two solutions of the linear differential equation

y=A(x)y+f(x),\begin{equation*} \mathbf{y}' = A(x)\mathbf{y} + \mathbf{f}(x), \end{equation*}

satisfying

y1(x0)=y2(x0).\begin{equation*} \mathbf{y}_1(x_0) = \mathbf{y}_2(x_0). \end{equation*}

Then

y1(x)=y2(x),x.\begin{equation*} \mathbf{y}_1(x) = \mathbf{y}_2(x), \qquad \forall x. \end{equation*}

Liouville’s Theorem. Let y1,,yn\mathbf{y}_1,\dots,\mathbf{y}_n be nn solutions of the homogeneous linear system

y=A(x)y.\begin{equation*} \mathbf{y}' = A(x)\mathbf{y}. \end{equation*}

Define the matrix

U(x)=(y1(x),,yn(x)).\begin{equation*} U(x) = \bigl(\mathbf{y}_1(x),\dots,\mathbf{y}_n(x)\bigr). \end{equation*}

Then U(x)U(x) satisfies

(detU(x))=trA(x)detU(x).\begin{equation*} \bigl(\det U(x)\bigr)' = \operatorname{tr} A(x)\,\det U(x). \end{equation*}

Corollary.

For any xx, the functions y1(x),,yn(x)\mathbf{y}_1(x),\dots,\mathbf{y}_n(x) are linearly independent if and only if there exists a point x0x_0 such that y1(x0),,yn(x0)\mathbf{y}_1(x_0),\dots,\mathbf{y}_n(x_0) are linearly independent.